
Newnes Interfacing Companion

To Robert Winston Cheary,
friend and teacher.

OXFORD AMSTERDAM BOSTON LONDON NEW YORK PARIS
SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

Newnes
An imprint of Elsevier Science
Linacre House, Jordan Hill, Oxford OX2 8DP
225 Wildwood Avenue, Woburn MA 01801-2041

First published 2002

Copyright 2002, A. C. Fischer-Cripps. All rights reserved

The right of A. C. Fischer-Cripps to be identified as the author of this work
has been asserted in accordance with the Copyright, Designs and
Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether
or not transiently or incidentally to some other use of this publication) without
the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder's written
permission to reproduce any part of this publication should be addressed
to the publisher

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 750 65720 0

 For information on all Newnes publications
 visit our website at www.newnespress.com

Printed and bound in Great Britain

Preface ix..

Part 1: Transducers 1.................................
1.0 Transducers 2...
1.1 Measurement systems 3.................................

1.1.1 Transducers 4...
1.1.2 Methods of measurement 5...........................
1.1.3 Sensitivity 6...
1.1.4 Zero, linearity and span 7..............................
1.1.5 Resolution, hysteresis and error 8.................
1.1.6 Fourier analysis 9..
1.1.7 Dynamic response 10......................................
1.1.8 PID control 11..
1.1.9 Accuracy and repeatability 12.........................
1.1.10 Mechanical models 13...................................
1.1.11 Review questions 14.....................................

1.2 Temperature 15..
1.2.1 Temperature 16...
1.2.2 Standard thermometers 17..............................
1.2.3 Industrial thermometers 18..............................
1.2.4 Platinum resistance thermometer 19...............
1.2.5 Liquid-in-glass thermometer 20.......................
1.2.6 Radiation pyrometer 21...................................
1.2.7 Thermocouple 22..
1.2.8 Thermistors 24..
1.2.9 Relative humidity 25..
1.2.10 Review questions 26.....................................
1.2.11 Activities 28...

1.3 Light 34...
1.3.1 Light 35..
1.3.2 Measuring light 36...
1.3.3 Standards of measurement 37........................
1.3.4 Thermal detectors 38......................................
1.3.5 Light dependent resistor (LDR) 39..................
1.3.6 Photodiode 40...
1.3.7 Other semiconductor photodetectors 41.........
1.3.8 Optical detectors 42..
1.3.9 Photomultiplier 43..
1.3.10 Review questions 44.....................................

1.4 Position and motion 45.....................................
1.4.1 Mechanical switch 46......................................
1.4.2 Potentiometric sensor 47.................................
1.4.3 Capacitive transducer 48.................................

1.4.4 LVDT 49..
1.4.5 Angular velocity transducer 50........................
1.4.6 Position sensitive diode array 51.....................
1.4.7 Motion control 52...
1.4.9 Review questions 53.......................................

1.5 Force, pressure and flow 54.............................
1.5.1 Strain gauge 55...
1.5.2 Force 57..
1.5.3 Piezoelectric sensor instrumentation 58..........
1.5.4 Acceleration and vibration 59..........................
1.5.5 Mass 60...
1.5.6 Atmospheric pressure 61................................
1.5.7 Pressure 63...
1.5.8 Industrial pressure measurement 64...............
1.5.9 Sound 65...
1.5.10 Flow 66..
1.5.11 Level 69...
1.5.12 Review questions 70.....................................

Part 2: Interfacing 71.....................................
2.0 Interfacing 72..
2.1 Number systems 73..

2.1.1 Binary number system 74................................
2.1.2 Decimal to binary conversion 75.....................
2.1.3 Hexadecimal 76...
2.1.4 Decimal to hex conversion 77.........................
2.1.5 2�s complement 78..
2.1.6 Signed numbers 79...
2.1.7 Subtraction and multiplication 80....................
2.1.8 Binary coded decimal (BCD) 81......................
2.1.9 Gray code 82...
2.1.10 ASCII code 83...
2.1.11 Boolean algebra 84.......................................
2.1.12 Digital logic circuits 85...................................
2.1.13 Review questions 86.....................................
2.1.14 Activities 87...

2.2 Computer architecture 88.................................
2.2.1 Computer architecture 89................................
2.2.2 Memory 90..
2.2.3 Segmented memory 91...................................
2.2.4 Memory data 92..
2.2.5 Buffers 93..
2.2.6 Latches 94...
2.2.7 Flip-flop 95...
2.2.8 Input/Output (I/O) 96.......................................

2.2.9 Microprocessor unit (MPU/CPU) 97................
2.2.10 Registers 98..
2.2.11 ROM 101...
2.2.12 Interrupts 102..
2.2.13 Memory map 104..
2.2.14 Real and protected mode CPU
operation 105...
2.2.15 Review questions 107.....................................
2.2.16 Activities 108...

2.3 Assembly language 111......................................
2.3.1 Instruction set 112...
2.3.2 Assembly language 113....................................
2.3.3 Program execution 114.....................................
2.3.4 Assembly language program structure 115.......
2.3.5 Assembler directives 116..................................
2.3.6 Code segment 117..
2.3.7 Assembly language shell program 118.............
2.3.8 Branching 119...
2.3.9 Register and immediate addressing 120...........
2.3.10 Memory addressing 121..................................
2.3.11 Indirect memory addressing 122.....................
2.3.12 Indexed memory addressing 123....................
2.3.14 Interrupts 124..
2.3.15 Review questions 125.....................................
2.3.16 Activities 126...

2.4 Interfacing 131..
2.4.1 Interfacing 132...
2.4.2 Input/Output ports 133.......................................
2.4.3 Polling 134...
2.4.4 Interrupts 135..
2.4.5 Direct memory access (DMA) 136....................
2.4.6 Serial port 137...
2.4.7 Serial port addresses 138.................................
2.4.8 Serial port registers 139....................................
2.4.9 Serial port registers and interrupts 140.............
2.4.10 Serial port baud rate 141.................................
2.4.11 Serial port operation 142.................................
2.4.12 Parallel printer port 143...................................
2.4.13 Parallel port registers 144...............................
2.4.14 Parallel printer port operation 145...................
2.4.15 Review questions 146.....................................

2.5 A to D and D to A conversions 147.....................
2.5.1 Interfacing 148...
2.5.2 The Nyquist criterion 149..................................
2.5.3 Resolution and quantisation noise 150.............
2.5.4 Oversampling 151...

2.5.5 Analog to digital converters 152........................
2.5.6 ADC (integrating method) 153...........................
2.5.7 ADC (successive approximation) 154...............
2.5.8 Aperture error 155...
2.5.9 ADC08xx chip 156...
2.5.10 Sample-and-hold 157......................................
2.5.11 Sample-and-hold control 158..........................
2.5.12 Digital to analog conversion 159.....................
2.5.13 DAC0800 160..
2.5.14 Data acquisition board 161..............................
2.5.15 Review questions 162.....................................

2.6 Data communications 163..................................
2.6.1 Communications 164...
2.6.2 Byte to serial conversion 165............................
2.6.3 RS232 interface 166..
2.6.4 Synchronisation 167..
2.6.5 UART (6402) 168..
2.6.7 Line drivers 170...
2.6.8 UART clock 171..
2.6.9 UART Master Reset 172...................................
2.6.10 Null modem 173..
2.6.11 Serial port BIOS services 174.........................
2.6.12 Serial port operation in BASIC 175.................
2.6.13 Hardware handshaking 176............................
2.6.14 RS485 177..
2.6.15 GPIB 178...
2.6.16 USB 179..
2.6.17 TCP/IP 181..
2.6.18 Review questions 182.....................................

2.7 Programmable logic controllers 183...................
2.7.1 Programmable logic controllers 184..................
2.7.2 Timing 185...
2.7.3 Functional components 186..............................
2.7.4 Programming 187..
2.7.5 Ladder logic diagrams 188................................
2.7.6 PLC specifications 190......................................
2.7.7 Review questions 191.......................................

2.8 Data acquisition project 192................................
2.8.1 Serial data acquisition system 193....................
2.8.2 Circuit construction 195.....................................
2.8.3 Programming 201..
2.8.4 Sample-and-hold 206..
2.8.5 Digital to analog system 208.............................

Part 3: Signal processing 211........................

3.0 Signal processing 212...
3.1 Transfer function 213..

3.1.1 Instrumentation 214...
3.1.2 Transfer function 215..
3.1.3 Transforms 216...
3.1.4 Laplace transform 217.......................................
3.1.5 Operator notation 218.......................................
3.1.6 Differential operator 219....................................
3.1.7 Integrator � passive 220.....................................
3.1.8 Differentiator � passive 221................................
3.1.9 Transfer impedance 222...................................
3.1.10 Review questions 223.....................................
3.1.11 Activities 224...

3.2 Active filters 227..
3.2.1 Filters 228..
3.2.2 T -network filters 229...
3.2.3 Twin-T filter 230...
3.2.4 Active integrator/differentiator 231....................
3.2.5 Integrator transfer function 232.........................
3.2.6 Low pass filter � active 233................................
3.2.7 2nd order active filter 234..................................
3.2.8 Double integrator 235..
3.2.9 Bandpass filter � narrow 236..............................
3.2.10 Differentiator transfer function 237..................
3.2.11 High pass filter � active 238.............................
3.2.12 High pass filter � w domain 239.......................
3.2.13 Bandpass filter � wide 240...............................
3.2.14 Voltage gain and dB 241.................................
3.2.15 Review questions 242.....................................
3.2.16 Activities 244...

3.3 Instrumentation amplifier 246..............................
3.3.1 Difference amplifier 247....................................
3.3.2 CMRR 248...
3.3.3 Difference amplifier with voltage
follower inputs 249...
3.3.4 Difference amplifier with cross-coupled
inputs 250...
3.3.5 CMRR cross-coupled inputs 251.......................
3.3.6 Instrumentation amplifier 252............................
3.3.7 Log amplifier 253...
3.3.8 Op-amp frequency response 254......................
3.3.9 Review questions 255.......................................
3.3.10 Activities 257...

3.4 Noise 261..
3.4.1 Intrinsic noise 262...

3.4.2 Environmental noise 263...................................
3.4.3 Signal-to-noise ratio 264...................................
3.4.4 Optical detectors 265..
3.4.5 Lock-in amplifier 266...
3.4.6 Correlation 267..
3.4.7 Review questions 268.......................................

3.5 Digital signal processing 269..............................
3.5.1 Digital filters 270..
3.5.2 Fourier series 271...
3.5.3 Fourier transform 272..
3.5.4 Sampling 273..
3.5.5 Discrete Fourier transform 274..........................
3.5.6 Filtering 275...
3.5.7 Digital filtering (domain) 276..............................
3.5.8 Convolution 277..
3.5.9 Discrete convolution 278...................................
3.5.10 Digital filtering (t-domain) 279.........................
3.5.11 Example 280...
3.5.12 Smoothing transfer function 281.....................
3.5.13 Review questions 282.....................................
3.5.14 Activities 283...

Index 286..

Further reading 294...

Parts lists for activities 295............................

Preface

The overall aim of this book is to present transducer devices,
computer interfacing and instrumentation electronics in a succinct
and memorable fashion. The book combines physics, computer
science and electrical engineering in a science/engineering context.
Starting from the transfer of physical phenomena to electrical signals,
the book presents a comprehensive treatment of computer interfacing
and finishes with signal conditioning, data analysis and digital
filtering. The book covers a wide scope but contains sufficient detail
to allow a practical application of the theory. Detailed explanations
are given, even of the most difficult of concepts. The review
problems offer a level of complexity which provides sufficient
challenge to impart a sense of achievement upon their completion.
The accompanying project work reinforces the theoretical work
while allowing the reader to gain the satisfaction and experience of
actually constructing a working interfacing circuit that can be used
on any personal computer with a serial port. The book will be useful
for students who are new to the subject, and will serve as a handy
reference for experienced engineers who wish to refresh their
knowledge of a particular topic.

In writing this book, I was assisted and encouraged by many
colleagues. In particular, I acknowledge the contributions of Alec
Bendeli, Stephen Buck, Bob Graves, Walter Kalceff, Les Kirkup,
Geoff Smith, Paul Walker, my colleagues at the University of
Technology, Sydney, the staff of the CSIRO Division of
Telecommunications and Industrial Physics, and all my former
students. My sincere thanks to my wife and family for their unending
encouragement and support. Finally, I thank Matthew Deans, Jodi
Burton and the editorial and production teams at Newnes for their
very professional and helpful approach to the whole publication
process.

Tony Fischer-Cripps,
Killarney Heights, Australia, 2002

ix

Newnes Interfacing Companionx

1

1.0 Transducers
A measurement system is concerned with the representation of one
physical phenomenon by another. The purpose of the measurement system
is for the measurement and control of a physical system.

In Part 1 of this book,
we are mainly interested
in transducers.
• A sensor is a device

which responds to a
physical stimulus

• A transducer is a
device which converts a
physical stimulus to
another form of energy
(usually electrical)

Physical
phenomena:
Sound
Meter reading
LED indicator
Digital display
Chart recorder
VDU output

Physical
phenomena:
Temperature
Voltage
Position
Velocity
Force
Pressure
Radioactivity
Light intensity
Resistance
Humidity
Gas concentration
Magnetic field
Frequency
Sound level

Actuator
provides a
physical

response to
electrical signal.

Actuator

Optional
feedback

Transducer
(sensor and

preamplifier)

Amplifier and
signal

conditioning

Computer
interface

Part 2 of this
book is
concerned with
computer
interfacing.

Part 3 of this
book covers
instrumentation
and signal
processing.

Newnes Interfacing Companion2

3

1.1.1 Transducers

Of most interest are the physical properties and performance
characteristics of a transducer. Some examples are given below:

Strain Strain gauge, a resistive transducer whose resistance
changes with length.

Temperature Resistance thermometer, thermocouple, thermister,
thermopile.

Humidity Resistance change of hygroscopic material.
Pressure Movement of the end of a coiled tube under

pressure.
Voltage Moving coil in a magnetic field.
Radioactivity Electrical pulses resulting from ionisation of gas at

low pressure.
Magnetic field Deflection of a current carrying wire.

Property Method of measurement

Performance characteristics

Sensitivity
Zero offset
Linearity
Range
Span
Resolution
Threshold
Hysteresis
Repeatability

Response time
Damping
Natural frequency
Frequency response

Operating temperature
range
Orientation
Vibration/shock

Static Dynamic Environmental

A consideration of these characteristics influences the
choice of transducer for a particular application.
Further characteristics which are often important are
the operating life, storage life, power requirements
and safety aspects of the device as well as cost and
availability of service.

In industrial situations, the property being measured or controlled is called
the controlled variable. Process control is the procedure used to measure
the controlled variable and control it to within a tolerance level of a set
point. The controlled variable is one of several process variables and is
measured using a transducer and controlled using an actuator.

Newnes Interfacing Companion4

An unknown component is inserted into the
bridge and the values of the others are
altered to achieve balance condition.
At balance, no
current flows
through the
galvanometer G.

Null method

Deflection method

• Direct comparison
• No loading
• Can be relatively slow

• Indirect comparison
• Deflection from zero until

some balance condition
achieved

• Limited in precision and
accuracy

• Loading (transducer itself
takes some energy from
the system being
measured)

• Relatively fast

Null method: Bridge circuit.

3

u

4

1

3

u
41

C
R

C
R

C
L

RR

=

=

Deflection method:
Moving coil voltmeter.

1.1.2 Methods of measurement

All measurements involve a
comparison between a
measured quantity and a
reference standard. There
are two fundamental
methods of measurement:

Although such a meter is designed to have a
very high internal impedance, it has to draw
some current from the circuit being measured
in order to cause a deflection of the pointer.
This may affect the operation of the circuit
itself and lead to inaccurate readings –
especially if the output resistance of the
voltage source being measured is large.

pointer

coil

magnet

C3 R1

C4

Ru

Lu

R4

G

1.1 Measurement systems 5

1.1.3 Sensitivity

An important parameter associated with every transducer is its sensitivity.
This is a measure of the magnitude of the output divided by the magnitude
of the input.

dI
dO

signalinput
signaloutput ysensitivit

=

=

In most applications, the chances are that the signal produced by the
transducer contains noise, or unwanted information. The proportion of
wanted to unwanted signal is called the signal-to-noise ratio or SNR
(usually expressed in decibels).

input detectableleast
1d =

e.g. If d = 106 V-1 for a voltmeter, it means
that the device can measure a voltage as low
as 10-6 V.

e.g. The sensitivity of a thermocouple may
be specified as 10 µV/oC indicating that for
each degree change in temperature between
the sensor and the “reference” temperature,
the output signal changes by 10 µV. The
sensitivity may not be a constant across the
working range.

The higher the SNR the better. In
electronic apparatus, noise signals often
arise due to thermal random motion of
electrons and is called white noise.
White noise appears at all frequencies.

The first stage of any amplification of signal
is the most critical when dealing with noise.
In most sensitive equipment, a preamplifier
is connected very close to the transducer to
minimise noise and the resulting amplified
signal passed to a main, or power amplifier.

The noise produced by a transducer limits its ability to detect very small
signals. A measure of performance is the detectivity given by:

n

S
10 V

V
log20SNR =

Signal
voltage

Noise
voltage

The least detectable input is often referred to as the noise floor of the
instrument. The magnitude of the noise floor may be limited by the
transducer itself or the effect of the operating environment.

The output voltage of most transducers is in the millivolt range for
interfacing in a laboratory or light industrial applications. For heavy
industrial applications, the output is usually given as a current rather than a
voltage. Such devices are usually referred to as “transmitters” rather than
transducers.

Newnes Interfacing Companion6

e.g. A thermocouple has an input range of −100
to +300 oC and an output range of −1 to +10 mV.

The span or full scale deflection (fsd) is the maximum variation in the
input or output:

e.g. The thermocouple above has an input span
of 400 oC and an output span S of 11 mV .

The % of non-linearity describes the
deviation of a linear relationship
between the input and the output.

Max non-
linearity = 100

S
×

δ

Zero offset errors can occur because
of calibration errors, changes or
ageing of the sensor, a change in
environmental conditions, etc. The
error is a constant over the range of
the instrument.

Zero and span calibration controls:

A change in sensitivity, or a span
error, results in the output being
different to the correct value by a
constant %. That is, the error is
proportional to the magnitude of
the output signal (change in slope).

A linear output can be obtained by
using a look-up table or altering the
output signal electronically.

1.1.4 Zero, linearity and span

The range of a transducer is specified by the maximum and minimum
input and output signals.

minmax OOS −=

O

I

Actual
(non-linear)
response

δ

S Desired linear
response

O O

I I

Zero adjustment
changes the
intercept

Span adjustment
changes the slope

Slope of the line
is the
sensitivity

span

71.1 Measurement systems

Output maximum and minimum

Input signal

1.1.5 Resolution, hysteresis and error

A continuous increase in the input signal sometimes results in a series of
discrete steps in the output signal due to the nature of the transducer.

e.g. A wire wound potentiometer
being used as a distance
transducer. The wiper moves over
the windings bringing a step
change in resistance (R of one
turn) with a change in distance.

The resolution of a transducer is defined as the size of the step
divided by the fsd or span and is given in %.

S
Oδ

Resolution =
e.g. The resolution of a 100 turn
potentiometer is 1/100 = 1%.

For a particular input signal, the magnitude of the output signal may
depend on whether the input is increasing or decreasing − this is called
hysteresis.

Maximum
hysteresis = 100

S
×

δ

In mechanical systems,
hysteresis usually occurs
due to backlash in moving
parts (e.g. gear teeth).

The general response of
a transducer is usually
given as a percent error.

100
S
×

δ
Error =

O

I

δ

S

Hysteresis may lead to
zero, span and non-
linearity errors.

O

I

Actual response
containing zero
offset, non-
linearity, span
errors, etc.

δ

S

Theoretical
response

Newnes Interfacing Companion8

1.1.6 Fourier analysis

Analog input signals that require sampling by a digital to analog converter
system do not usually consist of just a single sinusoidal waveform. Real
signals usually have a variety of amplitudes and frequencies that vary with
time.

For example, a square wave
can be represented using the
sum of individual component
sine waves:

+ω

π
+ω

π
+ω

π
= ...t5sin

5
4t3sin

3
4tsin4y

Amplitude of
component Frequency of

component

tsin4y ω

π

=

ω

π
+ω

π
= t3sin

3
4tsin4y

ω

π
+ω

π
+ω

π
= t5sin

5
4t3sin

3
4tsin4y

ωt

y

π

1

−1

Such signals can be broken down into component frequencies and amplitudes
using a method called Fourier analysis. Fourier analysis relies on the fact
that any periodic waveform, no matter how complicated, can be constructed
by the superposition of sine waves of the appropriate frequency and
amplitude.

2π

Fourier analysis, or the breaking
up of a signal into its component
frequencies, is important when we
consider the process of filtering
and the conversion of an analog
signal into a digital form.

91.1 Measurement systems

1.1.7 Dynamic response

The dynamic response of a
transducer is concerned with
the ability for the output to
respond to changes at the
input. The most severe test
of dynamic response is to
introduce a step signal at the
input and measure the time
response of the output.

Input
(step)

1. Under-damped

3. Over-damped

2. Critically
damped

Various forms
of output

tOf particular interest are
the following quantities:

• Rise time
• Response time
• Time constant τ

A step signal at the input
causes the transducer to
respond to an infinite
number of component
frequencies. When the
input varies in a
sinusoidal manner, the
amplitude of the output
signal may vary
depending upon the
frequency of the input if
the frequency of the
input is close to the
resonant frequency of
the system. If the input
frequency is higher than
the resonant frequency,
then the transducer
cannot keep up with the
rapidly changing input
signal and the output
response decreases as a
result.

O

finput

Bandwidth

Resonant
frequency

3 dB
point

2
1

'O
O

=

Frequency
range

O

t

63%

τ

90%

Response
time

Rise time

5%

O’

O

Newnes Interfacing Companion10

1.1.8 PID control

In many systems, a servo feedback loop is used to control a desired quantity.
For example, a thermostat can be used in conjunction with an electric heater
element to control the temperature in an oven. Such a servo loop consists of a
sensor whose output controls the input signal to an actuator.
The difference between the target or set point and the current value of the
controlled variable is the error signal ∆e. If the error is larger than some
preset tolerance or error band, then a correction signal, positive or
negative, is sent to the actuator to cause the error to be reduced. In
sophisticated systems, the error signal is processed by a PID controller
before a correction signal is sent to the actuator. The PID controller
determines the magnitude and type of the correction signal to be sent to the
actuator to reduce the error signal.

The PID correction acts upon the error signal
which is itself a function of time. The PID
correction is thus also a function of time. For
example, in servo motion control, a PID
controller is able to cause the moving body (e.g.
a robot arm) to accelerate, maintain a constant
velocity, and decelerate to the target position.

The characteristics of a PID controller are expressed in terms of gains. The
correction signal O from the PID controller to the actuator is given by the
sum of the error ∆e term multiplied by the proportional gain Kp, the
integral gain, Ki and the derivative gain Kd.

()
dt

edKdteKeKtO dIp
∆

+∆+∆= ∫
• The proportional term causes the controller to generate a signal to

the actuator whose amplitude is proportional to the magnitude of the
error. That is, a large correction is made to correct a large error.

• The integral term is used to ramp the actuator to the final state to
overcome friction or hysteresis in the system. It is a long-term
correction and allows the system to servo to the target value.

• The derivative signal offers a damping response that reduces
oscillation. The magnitude of the derivative correction depends
upon the rate of change of the magnitude of the error signal. If the
signal changes rapidly, a large correction is made.

Constant
velocity

Acceleration

Decelerationv

t

111.1 Measurement systems

1.1.9 Accuracy and repeatability

Accuracy is a quantitative statement about the closeness of a measured
value with the true value.

The true value of a quantity is that
which is specified by international
agreement.

The kilogram is the unit of
mass and is equal to the
mass of an international
standard kilogram held in
Paris.

+

true value

+
+

+
+

+

true value
+

+
+

+

+

+

+
+
++

+

true value

+

High precision
Low accuracy

Low precision
High accuracy

High precision
High accuracy

This condition could be caused by a
systematic error in the measuring
system (e.g. zero offset).

This condition could be caused by a
random error in the measuring system.

There is a difference between the
accuracy and the precision of physical
measurements.

High precision need not be
accompanied by high accuracy.
Precision is measured by the standard
deviation of several measurements.

High accuracy may also be
accompanied by a wide scatter in
the measurement readings leading
to low precision.

Newnes Interfacing Companion12

If two (or more) springs
are connected in series,
then loaded with a
common force, then the
total overall stiffness is
given by:

If two or more springs are
connected in parallel, then
they experience a common
displacement. In this case,
the overall stiffness is given
by:

∑
=

= n

1i ik
1

1k

k1

k2

k3

F

∑
=

=

n

1i
ikk

k1 k2 k3

F

F1 F2 F3

Deflection of springs

1.1.10 Mechanical models

The response of materials and systems can often be modelled by springs and
dashpots. This allows both static and dynamic processes to be modelled
mathematically with some convenience. Most materials have a mechanical
character that falls somewhere in between the two extremes of a solid and a
fluid. Springs represent the solid-like characteristics of a system. Dashpots
represent the fluid-like aspects of a system.

k

kxF =

n

dt
dxF λ=

dt
dxkxF λ+=

λ

Maxwell

λ

k

Voigt

dt
dF

k
1F1

dt
dx

+

λ

=

x

t

Xt=∞

x

t

Xt=0

x

t

x

t

λ
Xt=0

Displacement in response
to a step application of
constant force.

NewtonHooke

131.1 Measurement systems

5. A dashpot and spring in parallel (the Voigt model) can be represented by
a resistor (k becomes R) and an inductor (λ becomes the inductance L) in
series. If the applied force is replaced by voltage, and the resulting
displacement is replaced by the current, show that the magnitude of the
applied force and the magnitude of the displacement are related by:

1. A moving coil galvanometer has a series resistance of RM = 120 Ω
and a full-scale deflection at 2.5 µA. The display scale is divided
into 100 equal divisions. The meter is to be used as a voltmeter to
measure the emf from a 3.0 V source which has an output
resistance RO of 1.5 kΩ.
(a) Determine the resistance RS required to be connected in series

with the galvanometer to make a voltmeter 0−5 V range.
(b) Determine the uncertainty in the measured value for the above

source emf due to meter resolution.
(c) Determine the reading on the voltmeter when it is connected

across the 3.0 V voltage source.

1.1.11 Review questions

2. An infrared gas analyser is used to measure the concentration of carbon
monoxide (CO) in the exhaust gases of a motor vehicle. Before the
measurement is taken, purified air containing no CO is introduced and
the “zero” is adjusted for 0 mV on the output display. Then, a
calibrated mixture of CO and air at 400 ppm is introduced and the span
adjusted to give 400 mV on the output. The exhaust gas is then sampled
by the instrument and the reading is 350 mV. It is discovered later that
the concentration of the calibrated mixture was in error and should
have been 410 ppm. Assuming the response of the instrument is linear,
determine a corrected value for the measured concentration.

3. The diagram shows the output of a linear
transducer as a function of its input.

O

I

(a) What formal term is given to the slope
of this line?

(b) What control is used to adjust this slope
during calibration, the “zero” or the “span”?

4. List three static, three dynamic and three environmental performance
characteristics which would influence the choice of a transducer for a
particular application.

xkF 222
λω+=

(Ans: 2 MΩ, 0.005 V, 2.9985 V)

(Ans: 358.8)

Newnes Interfacing Companion14

15

1.2.1 Temperature

Celsius temperature scale:
defined such that
0 oC = ice point of water
100 oC = boiling point of water.

Fahrenheit temperature scale:
defined such that
32 oF = ice point of water
212 oF = boiling point of water

180
10032FC oo

 −=

The measurement of temperature is naturally associated with the definition
of a temperature scale.

The International Temperature Scale is based on the definition of a number
of basic fixed points. The basic fixed points cover the range of temperatures
to be normally found in industrial processes. They are (expressed here in oC):

1. Temperature of equilibrium between liquid and gaseous oxygen at
1 atm pressure is: −182.97 oC

2. Temperature of equilibrium between ice and air-saturated
water at normal atmospheric pressure (ice point) is: 0.000 oC

3. Temperature of equilibrium between liquid water and its vapour
at a pressure of 1 atm pressure (steam point) is: 100.000 oC

5. Temperature of equilibrium between solid silver and liquid silver at
normal atmospheric pressure is: 960.5 oC

4. Temperature of equilibrium between liquid
sulphur and its vapour at 1 atm pressure is: 444.60 oC

6. Temperature of equilibrium between solid gold and liquid gold at
normal atmospheric pressure is: 1063 oC

Note: Standard atmospheric pressure
(1 atm) is defined as 760 mm Hg (ρ =
13.5951 g/cm3) at g = 9.80665 msec−2.

Other fixed points have been defined which facilitate calibration of
thermometers in particular applications. Some examples are:

• Equilibrium between solid and gaseous CO2: −78.5 oC
• Freezing mercury: −38.87 oC
• Freezing tin: 231.8 oC
• Freezing lead: 327.3 oC
• Freezing tungsten: 3400 oC

Newnes Interfacing Companion16

1.2.2 Standard thermometers

Temperatures in between the standard fixed points are found using standard
thermometers which have been calibrated using the fixed points as follows:

From the ice point to 660 oC, the temperature is
found from the resistance of a Platinum resistance
thermometer:

2
oT BTAT1RR ++=

The constants Ro, A and B, and degree of non-
linearity, are determined from the ice, steam and
sulphur points.

From −−−−190 oC to the ice point, the temperature is
found from the resistance of a platinum resistance
thermometer:

()32
oT 100TCBTAT1RR −+++=

The constants Ro, A, B and C, and degree of
non-linearity are determined from the ice, steam,
sulphur points and oxygen points.

From 600 oC to the gold point (1063 oC)
temperatures are found from the emf generated
using a platinum/platinum-rhodium
thermocouple where the cold junction is held at
0 oC. The temperature is found from:

2CTBTAemf ++=

The constants A, B and C are determined from
the freezing point of antimony, the silver and
gold points.

Above the gold point, temperature is determined
using a radiation pyrometer which compares the
intensity of the light of a particular wavelength to
that which would be emitted by a black body at
temperature T.

Note: The official SI unit
of temperature is the
Kelvin. It is the
temperature equal to the
fraction 1/273.16 of the
temperature of the triple
point of water.

The triple point of water
is the state of pure water
existing as an
equilibrium mixture of
ice, liquid and vapour.
Let the temperature of
water at its triple point
be equal to 273.16 K.
This assignment
corresponds to an ice
point of 273.15 K or 0 oC
− slightly lower than the
triple point. The triple
point is used as the
standard fixed point
because it is
reproducible.

BS1041: 1943.

171.2 Temperature

1.2.3 Industrial thermometers

Contact
• Expansion of solids (bimetallic strip)
• Expansion of liquids (mercury in glass)
• Expansion of gases (bellows)
• Thermoelectric junctions (thermocouple)
• Electrical resistance (thermistor)
• Change of state (melting point methods)

Non-contact
• Optical pyrometers (change in colour of hot bodies,

disappearing filament device)
• Total radiation pyrometer (intensity of all wavelengths of

radiation from hot body measured by focussing rays, using a
lens or mirror, onto a “receiver” which may be a thermocouple
or resistance element).

The choice of thermometer depends on:
• The range of temperatures to be measured.
• Permissible time lag.
• Risk of chemical reaction with thermometer.
• Size and space requirements – ease of readings.
• Robustness.
• Single readings or recordings.

Precautions:
• Good contact between the hot body and sensor.
• Sensor to have small heat capacity.
• Chemical reactions which absorb or liberate heat to be avoided.
• Condensation to be avoided (latent heat may cause errors in

temperature measurement).
• Electrical shielding to reduce noise pickup.

In practice, thermometers used in industry have to be robust, reliable and
often fast-acting. There are two general classes of thermometer, those that
make contact with the body whose temperature to be measured, and those
that do not.

Thermocouple tip with
wires bonded together

Bi
m

et
al

lic
 s

tri
p

ty
pe

 th
er

m
om

et
er

Bellows type
thermometer

Newnes Interfacing Companion18

1.2.4 Platinum resistance thermometer

For a fundamental interval of
38.5 Ω, and Ro= 100 Ω, the
calibration constants for Pt are:

The electrical resistance of a platinum wire-wound resistor changes with
temperature. The response is reasonably linear and can be approximated by:

Resistance at 0 oC

Resistance at T

A and B are
calibration
constants

The resistance of the sensor
changes with temperature. When
the resistance changes, the
current in the circuit changes.
The rheostat is adjusted to bring
the current back to its former
value. This can be achieved by
keeping the voltage across the
standard resistor a constant using
the rheostat. The change in
voltage on the measuring
potentiometer is thus due to a
change in temperature only.

A = 3.91 × 10−3 °C−1

B = −5.85 × 10−7 °C−2

Power dissipated in
element not to exceed
0.1 MΩ to avoid self-
heating.

The change in resistance over a temperature range of 0 to
100 oC is called the fundamental interval and fixes the
sensitivity of the device. A fundamental interval of
38.5 Ω is specified in BS1904 for temperature ranges up
to 600 oC. Above 600 oC, the fundamental interval may
be reduced to 10.000 Ω or even 1.000 Ω.

The Pt resistance sensor normally
contains a supplementary ballast
resistor (having a negligible
change of resistance with
temperature) the value of which is
selected to make the total
resistance of the element Ro to be
100.0 Ω at 0 °C.

Pt
 re

si
st

an
ce

 th
er

m
om

et
er

 p
ro

be

V Rheostat

Rstand

R

Monitoring
potentiometer

Measuring
potentiometer

191.2 Temperature

()2
oPt BTAT1RR ++=

A common thermometer in industry is the liquid-in-glass type which might
contain either mercury or alcohol.

1.2.5 Liquid-in-glass thermometer

• Cheap, simple and portable.

• Restrictions on orientation
• High heat capacity.
• Significant time lag.

Advantages:

Disadvantages:

There are specific constructional guidelines
(BS1704) which ensure uniformity of performance
of thermometers from different manufacturers.

Designed for temperature range
−120 °C to +510 °C and may be
either total immersion or 100 mm
immersion.

Type “A” thermometers are
mercury-in-glass inert gas, solid
stem. Type “B” are alcohol-in-
glass, solid stem.

• Stem: made of lead glass with an enamel back.
• Bulb: made cylindrical and has an external

diameter not exceeding that of the stem.
• Thermometer is required to be annealed before

graduation.
• Graduation lines are of uniform thickness not

exceeding 0.15 mm and a line in a plane at right
angles to the stem aligned to the left when the stem is
viewed from the front in a vertical position.

• Immersion line is etched on the back of the stem for
100 mm immersion thermometers.

• A glass ring or rounded top is required at the top of
the stem.

• A safety volume exists at the top of the capillary tube
which is at least 20 mm above the top graduation line.

• Gas filling employed, e.g. N2.
• Manufacturer’s mark.
• Schedule mark.

Constructional features:

Markings:

e.g. GP 150C/Total means
general purpose thermometer,
maximum temperature 150 °C,
total immersion type.

Safety
gap

Li
qu

id
-in

-g
la

ss
 th

er
m

om
et

er

Newnes Interfacing Companion20

1.2.6 Radiation pyrometer

Radiation pyrometers are usually used to measure high temperatures where
physical contact with the hot body is not possible. A very popular form of
pyrometer is the disappearing filament type.
The brightness of an electric
filament lamp is adjusted by the
operator by altering the current
that passes through it. The hot
body and an electric filament are
both visible through an
eyepiece. When brightness of
the filament matches that of the
hot body, the filament becomes
invisible. The current through
the filament at the matching
point is an indication of
temperature of the hot body.

Field of viewFilament

Usually, a red filter is used at the
eyepiece so that matching is done at a
particular wavelength (makes it easier
to obtain a match). A correction table
is used to obtain a true temperature
from the indicated value which
accounts for non-black body radiation
when using the red filter.

Note: An additional screen may
also be employed before the
objective lens of the instrument
to reduce the amount of
incoming radiation. This permits
a lower current to be used when
measuring the temperature of
very hot bodies and thus
increasing filament life. With the
screen in place (usually a piece
of optically neutral glass) a
second scale of temperatures is
provided.

Note: It is very common to use
the eye as an optical pyrometer.
For example, in the heat
treatment of metals, it is
sometimes required to heat until
“cherry red” etc.

Optical pyrometer

211.2 Temperature

1.2.7 Thermocouple

A thermocouple consists of two dissimilar metals joined at either end.
One of the junctions is held at a reference temperature, and the other
junction is at the temperature to be measured. If a voltmeter is introduced
into the circuit, the voltage depends on the difference in temperature
between the two junctions of the device.

Advantages:

Disadvantages:

• Able to measure high
temperatures.

• Easily calibrated.
• Mechanically robust.
• Reasonably resistant to

chemical attack.
• Can measure temperature of

solids, liquids and gases.
• Reasonably fast response

time (usually a few seconds).

• Loss of heat through
thermocouple wires may
lead to error in measured
temperature.

• Resistance of thermocouple
wire may affect emf
displayed on meter.

• Response may change with
time due to the diffusion of
impurities.

• Limited range of linearity.
• Accuracy limited to about

1%.

Sensor
(“hot junction”)VReference

(“cold junction”)
How it works:
1. Consider a single length of metallic

conductor where the temperature of one
end is raised relative to the other. The
number density of mobile electrons
increases with increasing temperature
and leads to a concentration gradient of
electrons between the hot and cold ends
of the conductor. Due to this gradient,
diffusion of electrons occurs from the hot
end to the cold end. The hot end
becomes positively charged. This is the
Thomson effect.

2. Now consider two lengths of dissimilar
metals joined at one end. There is a
difference in the density of electrons in
the two materials. Thus, there is a
concentration gradient of electrons at
the junction which results in diffusion of
electrons across the junction. This
diffusion means that the material with
the higher density of electrons becomes
positively charged. This is the Seebeck
effect.

These two effects lead to a contact
potential at the junction of two dissimilar
metals, the magnitude of which depends
upon the temperature and the nature of the
metals. The difference in contact potentials
between the two junctions is a measure of
the temperature difference between them.

H
ot

 ju
nc

tio
n

Newnes Interfacing Companion22

The selection of metals which are used to make thermocouples depends upon
the range of temperatures to be measured. The thermoelectric sensitivity
(µV/°C) of a particular material is stated with respect to platinum at 0 oC.

Material Sensitivity
(µV/°C)

Constantan* −35
Copper +6.5
Iron +18.5
Platinum 0

A commonly used thermocouple is
copper/constantan. The sensitivity
is thus: +6.5 − (−35) = 41.5 µV/°C.

* Constantan is an alloy of 60%Cu and 40%Ni.
Chromel is an alloy of nickel and chromium
and alumel is an alloy of nickel and aluminium

Several standard pairs of materials are in
common use and are conventionally given
character labels, e.g. “Type K”.

Copper/constantan* T −200 +300 4.24 mV
Iron/constantan J −200 +1100 5.268
Chromel/alumel* K −200 +1200 4.10

The emf produced for a hot
junction at 100 °C and cold
junction at 0 °C.

Temperature range °C

The introduction of a third
metal into the thermocouple
circuit does not alter the
difference in contact
potentials between its ends
as long as the newly
introduced junctions are both
at the same temperature.
This means that the ends of
a thermocouple may be
brazed or soldered together
without affecting the
operation of the device.

Thermocouples are usually non-linear. The output may be linearised in
software using data from calibration reference tables that are available
which give temperature and voltage relationships referenced to 0 oC.
However, the cold junction in an actual thermocouple is usually at room
temperature. Cold junction compensation is required to correct for this.
For example, an LM335 precision temperature sensor, a solid state device
which acts like a zener diode, can be used to offset the thermocouple
voltage. The reverse bias breakdown voltage of this device is linearly
dependent upon the absolute temperature and is directly calibrated in K.
The thermocouple voltage corresponding to the separately measured room
temperature is added to the voltage from the thermocouple and then the
calibration look-up table is applied to determine the temperature at the
sensor end of the thermocouple. Cold junction compensation can be done
electrically in hardware, or by a software correction to the data.

231.2 Temperature

1.2.8 Thermistors

Thermistors are resistive temperature elements made from semiconductor
materials. The resistance of these elements decreases with increasing
temperature (negative temperature coefficient). The correspondence
between resistance and temperature is highly non-linear.

Advantages:
• Inexpensive.
• Small size.
• Low mass (small time constant).
• Large output signal (high sensitivity).

Disadvantages:
• Accuracy generally not as good as Pt resistance thermometer.
• Limited temperature range: −100 to 450 oC.
• Non-linear response.
• Tolerance only about ±5%.

The relationship between resistance and temperature is exponential and
has the form:

TT AeR
β

=

A and β are constants which depend upon the
material with which the thermistor is made. T
is the temperature in K, and RT the resistance
at temperature T.

If a reference temperature To is chosen, then this equation can be
expressed as:

−β=

o
oT T

1
T
1expRR

where Ro is the resistance at To, usually taken to be 25 oC.

A typical value of resistance at room temperature is 10 kΩ falling to
about 1 kΩ at 100 oC.

Thermistor

Newnes Interfacing Companion24

Some thermistors have a
positive temperature
coefficient.

1.2.9 Relative humidity

The traditional method of
measuring humidity is by the use
of a wet and dry bulb
psychrometer. In this device, a
wick, soaked in distilled water, is
placed over the bulb of a mercury-
in-glass thermometer. Another
identical thermometer is placed
nearby with nothing over the bulb.
The air whose relative humidity is
to be measured is blown over the
bulbs of both thermometers.
The evaporation of water from the wet
bulb causes the temperature measured
to fall compared with that of the dry
bulb. A psychrometric chart is used to
read off the relative humidity from the
wet and dry bulb thermometer
readings.

Wick
Dry bulb
(underneath
shield)

Wet bulb
(shield
removed)

Air drawn
in by fan

Relative humidity can be measured
electronically. One device uses the
change in capacitance between two
gold films separated by a mylar sheet.
As water is absorbed into the mylar,
the capacitance changes and this can be
measured electronically. In another
device, the change in capacitance of
two silicon wafers on opposite sides of
a glass slide is measured. The
capacitance depends upon the relative
humidity of the air surrounding the
device. A temperature sensor mounted
above the device is used to compensate
for differences in response at different
ambient temperatures.

Mylar sheet type sensor

Silicon wafer type sensor

Wet and dry bulb
psychrometer

251.2 Temperature

1. A Pt resistance thermometer is to be used to measure
temperature. The relationship between resistance and
temperature is to be given by the following equation:

If Ro = 100 Ω, R100 = 138.50 Ω, and R200 = 175.83 Ω, determine:
(a) the value of the constants A and B;
(b) the fundamental interval.

4. A mercury-in-glass thermometer is marked as follows:

Identify the meaning of each of these markings.

5. A mercury-in-glass thermometer made to an approved standard contains
a widening of the capillary tube at the top of the instrument. What is the
purpose of this widening and why must it have a spherical top?

2. A Pt resistance element is marked as per the following diagram. What
is the function of each pair of terminals?

E F A B

6. An optical pyrometer uses a disappearing filament to enable an estimate
of temperature to be made. In what way does the filament disappear
and what is the significance of the disappearance?

3. BS1904 specifies that the fundamental interval for a Pt resistance
thermometer should be 38.5 Ω. What does the term “fundamental
interval” refer to?

1.2.10 Review questions

Newnes Interfacing Companion26

()2
oPt BTAT1RR ++=

7. Discuss the relative merits of the
arrangement of thermocouple
connections as shown:

8. Refer to an iron/constantan thermocouple (Type J) table.

(a) If the cold junction is at a room temperature of 25 oC, and the
reading on the millivolt meter is 24.4 mV, determine the
temperature of the hot junction.

(b) The calibration table for an iron/constantan thermocouple can
be approximated by the following formula:

Using the mV reading given in (a), determine the percentage
difference between the results given by the table and the formula
for the temperature in (a).

Thermocouple
wires

V

V

Copper
leads

V

V

Copper
leads

Furnace
at 600 oC

Control room
at 20 °C

Temperature
readout in
remote
building

Thermocouple
wires

Thermocouple
wires

Thermocouple
wires

(a)

(b)

(c)

(d)

4937

24

T101334.0T108566.0

T103047.0T05038.0Emf
−−

−

×+×−

×+=

(Ans: 469°C, 8%)

271.2 Temperature

In a typical application, one end of a thermocouple is usually brazed or
soldered together to form the sensor and the other ends of the wires are
connected directly to the voltmeter. In this case, the reference junction is at
room temperature.

To overcome variations in voltage which would occur due to changes in
room temperature, a third temperature measuring device may be employed
to provide cold junction compensation. The third temperature sensor
measures an absolute value of room temperature and provides a voltage,
which when added to the thermocouple voltage, produces a total emf as if
the cold junction of the thermocouple was at 0 oC.

A thermocouple consists of a length of two dissimilar metals which are
joined at either end. One of the junctions is commonly held at a reference
temperature, and the other junction is exposed to the temperature to be
measured. The voltage measured across a break in one of the wires
depends on the difference in temperature between the two junctions of
the device.

Separately
calibrated
temperature
measuring device

1.2.11 Activities

All at room temperature

oC

Pt
Hot
junction

Newnes Interfacing Companion28

The aim of this part of the experiment is to construct a chromel/alumel
thermocouple and to calibrate it against a known standard.

1. Set up the apparatus as shown in the diagram and set the digital
voltmeter to the 100 mV range.

2. Check the temperature of the ice bath at regular periods to ensure it
remains at 0 oC.

3. Heat the water containing the hot junction gently and so obtain a
range of temperatures between 0 oC and 100 oC with corresponding
readings on the voltmeter.

4. Take sufficient readings to enable you to construct a good calibration
graph of temperature (oC) vs thermocouple voltage (mV).

5. Compare your data with that given by BS4937.

Reference (“cold”)
junction 0 °C

Sensor
(“hot”)

junction
T °C

mV

Glass
thermometer

(a) Thermocouple calibration

291.2 Temperature

Cold junction compensation is a process whereby a voltage is added (or
subtracted) from the output voltage of the thermocouple so that the
reference junction appears to be at 0 oC even if it is not. This may be done
electronically using an LM335 precision temperature sensor. The LM335 is
a solid-state device which acts like a zener diode. The reverse bias
breakdown voltage is linearly dependent upon the absolute temperature and
is directly calibrated in K. For example, the output from the LM335
extrapolates to 0 V for 0 K. At 273 K, the breakdown voltage is 2.73 V.

A third terminal on the
device allows the output
to be calibrated against

a known reference
temperature.

To is a reference temperature
VoutTo is the output voltage at
To. The nominal value of the
quantity: is 10 mV/K.

o

Tout

T

V
o

+
−−−−

adj

LM335H

Errors due to self-heating of the device can be minimised by selecting a
current limiting resistor R1 to reduce the operating current through the
device to a minimum – enough to drive the device into breakdown at
maximum temperature for the application as well as any externally applied
loads. A current of about 1 mA is reasonable.

o
oToutTout T

TVV =

(b) Cold junction compensation

LM335

+V

R1

10k

Newnes Interfacing Companion30

Now, the thermocouple output voltage is determined by the temperature
difference between the hot and cold junctions and the relative
thermoelectric sensitivity of the metals. The Seebeck coefficient α for
some common thermocouples is shown below:

Copper/constantan T α = 42.4 µV/K
Iron/constantan J 52.8
Chromel/alumel K 41.0

The voltage output from the LM335 has to be matched with the voltage
range of the thermocouple material and this can be done using a simple
voltage divider resistor network.

The nominal sensitivity of the LM335 is 10 mV/K and we need to factor
this down to the µV/K range. We choose R3 and R4 so that:

34 R
mV10

R α

=

For example, if R3 = 220 kΩ, and we are using a Type K thermocouple,
then R4 is:

Ω=

×

×
=

−

−

 898

000,220
1010
108.40R 3

6

4

LM335

+V

R1

10k

R3

R4

311.2 Temperature

+

The LM335 is calibrated in K. However, the voltage output from the
thermocouple must be referenced to 0 oC = 273 K.

If the LM335 is above
0 °C, then a voltage is
added to that produced
by the thermocouple so
that it appears that the
cold junction of the
thermocouple is at 0 °C.

At 273 K, the output or reverse bias breakdown voltage of the LM335 will
be about +2.73 V. This voltage, factored down to match the thermocouple,
must then be applied to the negative side of the thermocouple to raise its
potential. Thus, when the hot junction is at 0 oC, there will be no voltage
difference between the output terminals.

Thermocouple
hot junction

Vout

R5

R6

−

A zener diode with
breakdown voltage Vz
provides a suitable fixed
voltage which is factored
down using a resistor
dividing network.

R2

Vz

5
z

6 R
V
273R α−

=

We need to choose
R6 so that:

Z2

To
instrumentation
(difference)
amplifier

LM335

+V

R1

10k

R3

R4

+V

Newnes Interfacing Companion32

1. With +V = 5 V, calculate a suitable value of R1 to limit the current
through the LM335 to 1 mA.

2. Calculate a suitable value of R4 with R3 = 220 K to match the
characteristics of the supplied thermocouple material.

3. Calculate a suitable value of R2 so that the maximum current through
the zener diode Z2 is no more than 1 mA with a +5 V supply.

4. Calculate suitable values of R5 and R6 so that the appropriate “zero”
offset is applied to the negative end of the thermocouple (select R5 =
220 k).

1. Design, build and test a thermocouple circuit which employs cold
junction compensation. The output of the circuit is to be a differential
voltage which is proportional to the temperature of the hot junction of
the thermocouple over the range 0−100 oC.

2. Construct an instrumentation amplifier which will take in the voltage
levels from a cold-compensated thermocouple circuit and provide a
0−5 V output voltage which is proportional to the temperature of the
hot junction of the thermocouple (oC).

3. Using the serial data acquisition system, construct a computerised
temperature recording and control system using the software of your
choice.

In order to interface our thermocouple to the serial data acquisition system
presented in Part 2 of this book, we need to amplify the signal to obtain an
appreciable voltage for subsequent conversion to digital format. The full-
scale output from the thermocouple circuit depends of course on the
maximum temperature being measured. Let us work with the range 0 to
100 oC. At 100 oC, the output from a K type thermocouple (including any
cold junction compensation) will be 4.1 mV. A convenient voltage gain
required would thus be about 1000 to give an analog input of around 4 V
to the ADC. The overall aims of the project activity in this book are to:

Data acquisition system

Parts list:
1x LM335H precision temperature reference
1x IN4732 4.8 V zener diode
2x 220 k; 1x 2.2 k; 1x 100 Ω; 1x 4.7 k; 1x 680 Ω; 1x 1 k

331.2 Temperature

34

1.3.1 Light

Light is an electromagnetic wave.

a travelling disturbance of varying
electric and magnetic fields

The velocity of light waves in a vacuum is c = 2.99792458 × 108 ms−1

c = fλ

Wavelength
350 nm to 700 nm
for “visible” light

For any type of wave, including light waves:

Frequency

Light can also be
regarded as a stream of
photons, individual
particles of zero mass
with an energy:

For visible light, the frequency is of the order of 1015 Hz. Photodetectors
cannot respond to such rapid changes and thus generally indicate rms or
mean values of power of the radiation.

The energy of a photon depends on the frequency but is in the order of
10−20 J. Most detectors respond to large numbers of photons but there are
a few that can provide a useful output for just one photon.

There is a difference between the measurement of radiant energy and that
of light. The term light implies a human connection, and the measurement
of visible light is called photometry. The human eye is a very common
photometric detector.

Radiometry is concerned with the measurement of radiant energy
independent of the type of detector used. A third field of radiation
measurement is concerned with the quantum nature of light and is called
actinometry − which arose from a study of the photochemical effects of
light.

x

A

−A

λ

ν= hE

Planck’s constant
6.63 × 10−34 Js

Frequency (Hz)

Velocity

Wavelength
Am

pl
itu

de

351.3 Light

1.3.2 Measuring light

The luminous flux per solid angle is
called the luminous intensity and is
given the unit candela (cd). It is the
photometric equivalent to radiant
intensity.

Many units concerning light are
in daily use but before we
introduce them, we need to
consider the definition of a solid
angle, the steradian (sr).

The steradian Ω is the solid angle which,
having its vertex in the centre of a sphere,
cuts off an area of the surface of the
sphere equal to that of a square with
sides of length equal to the radius of the
sphere.

The unit of luminous flux is the
lumen (lm = cd.sr). Luminous flux
is the radiant flux weighted by a
spectral efficiency factor which
characterises the response of the
human eye. The lumen is the human
equivalent of radiometric power
(W).

The brightness of a surface is called
the illuminance and has the unit lux
and is the luminous flux per unit
area (lx = l lm/m2). It is the human
or photometric equivalent of radiant
flux density.

Radiant energy is energy
received or transmitted in the
form of electromagnetic waves
and has the units of joules (J).

Radiant power or flux is
radiant energy received or
transmitted per unit time in
watts (W).

Radiant flux density
(irradiance) is the radiant power
incident on a perpendicular unit
area and has the units (Wm−2).

Radiant intensity is the radiant
power per unit of solid angle
(W/sr).

Radiometric definitions

Photometric definitions

Actinometric definition
Photon flux is the
actinometric equivalent of
radiant flux and is the number
of photons impinging on a
surface per second. Each
photon has an energy = hv.

The solid angle is the surface area of
the cone divided by the square of the
radius.

R

R

2r
dAd =Ω

Newnes Interfacing Companion36

1.3.3 Standards of measurement

The official SI base unit for measuring the luminous intensity of light is the
candela. The candela is the only SI base unit which has its origins in the
response of a human organ (i.e. the eye) – it is a photometric quantity. The
candela is a base SI unit upon which lumens and lux are derived.
The candela has become an important base unit due to the historical nature
of measurements of light which involved the human eye as the detector.
Early standards by which the response of a human eye were quantified
involved candles, flames, and incandescent lamps. Human observers
compared an unknown light source to a standard.

Modern methods utilise the response of a device (e.g. a photocell) which
has spectral characteristics which are very close to that of a standard
observer. Standard sources provide a way of calibrating photocells to be
used in industry.

The candela is defined as the luminous intensity in a given direction of a
source that emits monochromatic radiation of frequency 540 x 1012 Hz and
has a radiant intensity of 1/683 W/sr in that direction.

The most commonly used measurement of light intensity is not actually the
candela, but the illuminance or brightness and is typically given in lux. In
a normal lecture room, the illuminance is about 300 lux. A bright
summer’s day: 20000 lux. In daylight, 680 lux corresponds to a radiant
flux of about 1 Wm−2

Standard light source

Standard photometer

For precise photometric work, it is usually preferable
to operate lamps on DC. It is preferable to set the
operating current. Measurement of luminous flux may
be made by comparison with luminous flux standards
using an integrating sphere, or a goniophotometer.

371.3 Light

1.3.4 Thermal detectors

In thermal detectors, incoming radiation results in a change of temperature
of the sensor. The temperature of sensor is an indication of the magnitude
of incident radiation.
Temperature is usually measured with a thermopile, which consists of a
large number of thermocouples in series. The sensitivity of a thermal
detector using a thermopile with a surface area of 1−10 mm2 is typically
about 10−100 V/W, with a time constant of about 10 ms.

Room
temp.

H
ot

 ju
nc

tio
ns

Emf

The sensitive
region of the
detector is usually
blackened so as
to absorb the
maximum amount
of incoming
radiation.

Another type of thermal
detector employs
thermistors instead of a
thermopile to measure
temperature. Such a device
is called a bolometer.

Still yet another type of thermal detector utilises the pyroelectric property
of certain ferroelectric materials. Incident radiation causes a change in the
surface charge of a residually polarised ceramic. The effect can only be
measured in a pulsed mode of operation and hence an AC amplifier is used
to produce a reasonable output.

Newnes Interfacing Companion38

In a semiconductor, photoconductivity is a result of an increase in
electrical conductivity due to impingement of photons on the
semiconductor material. This increase can only occur if the incident
photons have an energy hv > Eg where Eg is the energy gap between the
valence and conduction bands.

The increase in conductivity manifests itself as an increase in the current
through the device for a given applied voltage and as such may be called a
light dependent resistor (LDR).

When an LDR is illuminated with a steady beam, an equilibrium is
reached where the decay of electrons is matched by the excitation.

1.3.5 Light dependent resistor (LDR)

Incident photons cause
electrons in the valence
band to be given energy
hv and, if hv > Eg,
valence electrons enter
the conduction band,
leading to an increase in
the number of mobile
electrons.

Conduction
band

Valence
band

Energy gap

For a given frequency of incident beam, the number of mobile electrons
created is a function of intensity of the beam. However, the conductivity of
the material depends not only on the intensity of the incident radiation, but
also upon its frequency. This is due to the filling of available quantum
states.

e.g. A popular material for LDRs
is cadmium sulphide (CdS). CdS
has a peak response at 600 nm,
Eg = 2 eV and matches the
frequency response of the human
eye quite closely. In contrast, lead
sulphide (PbS) (Eg = 0.4 eV) has a
peak response at 300 nm.

The ratio of the number of excited electrons to the number of incoming
photons is called the quantum efficiency and is dependent on the
probability of the number of elastic collisions between photons and
electrons.

LD
R

391.3 Light

1.3.6 Photodiode

A photodiode employs the photovoltaic effect to produce an electric
current which is a measure of the intensity of incident radiation.

The area near the junction becomes free of majority carriers and is called
the depletion region. When a photon creates an electron-hole pair in the
depletion region, the resulting free electron is swept across the junction
towards the n side (opposite direction of Ed).

1. Near the junction,
concentration gradient
causes free electrons
from n side to diffuse
across junction to p side
and holes from p side to
diffuse across to n side.

2. Resulting build-up of
negative charge on p side
and positive charge on n
side establishes an
increasing electric field
Ed across the junction.

Ed

p n+ve−ve

V

Current will flow in external circuit as long as
photons of sufficient energy strike the material
in the depletion region.

Even though the photodiode
generates a signal in the absence of
any external power supply, it is
usually operated with a small
reverse bias voltage. The incident
photons thus cause an increase in
the reverse bias leakage current Io.

V

I

Io

Io

Dark

Illuminated

The reverse bias current is directly
proportional to the luminous
intensity. Sensitivity is in the order
of 0.5 A/W.

Ph
ot

od
io

de
Newnes Interfacing Companion40

1.3.7 Other semiconductor photodetectors

Phototransistors provide current
amplification within the structure of the
device. Incident light is caused to fall
upon the reverse-biased collector-base
junction. The base is usually not
connected externally and thus the
devices usually only have two pins.
Increasing the light level is the same as
increasing the base current in a normal
transistor.

Avalanche photodiodes
operate in reverse bias at a
voltage near to the break-
down voltage. Thus, a large
number of electron-hole
pairs are produced for one
incident photon in the
depletion region (internal
ionisation).

Schottky photodiodes
use electrons freed by
incident light at a
metal–semiconductor
junction. A thin film is
evaporated onto a
semiconductor substrate.
The action is similar to a
normal photodiode but
the metal film used may
be constructed so as to
respond to short
wavelength blue or
ultraviolet light only
since only relatively high
energy photons can
penetrate the metal film
and affect the junction.

PIN photodiode is a pn junction with
a narrow region of intrinsic
semiconductor sandwiched between
the p and n type material. This
insertion widens the depletion layer
thus reducing the junction capacitance
and the time constant of the device –
important for digital signal
transmission via optical cable.

A charge coupled device CCD is an
array of closely spaced photodiodes.
Incident light is converted to an electric
charge in each diode. A sequence of
clock pulses transfers the accumulated
charge to a digital output stream. For
video applications, an image must be
focussed on the device using a lens.

81
1x

50
8

pi
xe

l C
C

D
 a

rra
y

411.3 Light

1.3.8 Optical detectors

Optical detectors are characterised by:

Responsivity/Sensitivity

Spectral response

Detectivity D

Detectivity D*

Detectivity D**

s

out
P

P
Output power

Input (signal) power

Sensitivity as a function of
incident wavelength

sP
SNRD =

Signal to noise ratio

Input power

fAD*D ∆=

Detector area

Bandwidth

12121 WHzcm −

()
θ

π
=θ

sin
2*D*D

Half angle

Quantum efficiency η e
h
P

i s
s

ν

η=

Photons/sec

Charge on electron

Signal current

1W−

Independent of area
and bandwidth.

Independent of field
of view.

Newnes Interfacing Companion42

These two electrons are then
accelerated through another 200 V
potential to another dynode and thus
cause four electrons to be ejected. This
amplification may involve several
stages of dynodes, each at a potential
of 100−200 V above the previous
stage. Thus, the final electron current is
sufficiently high to measure with
conventional electronic equipment.

1.3.9 Photomultiplier

One of the most common applications of photomultipliers is for the
detection of nuclear radiation. But, the device may be also used as the
basis for detection of a wide range of phenomena which involve very low
light output levels (e.g. chemi-luminescent gas detector).
The light sensitive surface of a
photomultiplier consists of a thin film of
an alkali metal which has a low work
function W. When a photon with energy
E impinges on the metal, if E > W, then
electrons are emitted from the metal.
These electrons are accelerated by an
applied potential (of about 200 V)
towards a dynode. An accelerating
electron, when it strikes the dynode, has
sufficient kinetic energy to eject two or
more electrons from the dynode material.

Note: A high voltage power supply is
needed to produce the required
accelerating potentials at each dynode.

Amplifier

Photon

D
yn

od
e

HV

R

R

R

R

Amplification is thus done within the
evacuated structure and may be as
high as 106. Further, this
amplification is done prior to the
intrumentation amplifier input
resistance and noise in the signal is
thus reduced considerably. Dark
current (due to thermionic emission at
cathode) limits detectivity.

electron

Photomultiplier

431.3 Light

1. What is the photon flux incident on a 1 m2 surface being illuminated by
60 W of light of wavelength 620 nm.

3. Discuss the differences between the radiometric and photometric
definitions of light. That is, why are they different?

2. A 100 W motor cycle headlamp can just be seen by a pedestrian two
kilometres away. The size of the pupil in the pedestrian’s eye is 1 mm2.
Calculate the minimum incident power detectable by the retina of the
eye. Assume that the headlamp is 25% efficient in converting electrical
energy into visible light.

4. A photodiode has a sensitivity of 9 nA/lux at 560 nm and an area of 40
mm2. Express the detectivity in A/W. Note: 1 lux = l lumen/m2 . A
radiant flux of 1 W at 560 nm produces 685 lumens.

1.3.10 Review questions

(Ans: 1.87 × 1020/sec)

(Ans: 0.5 × 10-12 W)

(Ans: 0.154 A/W)

Newnes Interfacing Companion44

45

1.4.1 Mechanical switch

A simple contact type transducer
converts displacement into an electrical
signal and may take the form of a
mechanically operated switch.

Wear of the contact points in a switch
occurs mainly due to arcing. This is
especially important when a switch is
used across an inductive load. Opening
such a switch causes a very high voltage
to be induced across it (due to Lenz’s law)
which leads to arcing across the gap. For
this reason, some switches have a gap and
opening rate specifically designed for DC
and AC applications.

Electrons are ejected from the
negative (or cathode) side of the
switch and accelerated towards the
positive side (anode). This causes
ions to be dislodged from the
anode and be accelerated towards
the cathode. Material accumulates
on the cathode and cavities appear
on the anode.

Switches are specified as single or
double pole (one or two rows of parallel
contacts), single or double throw (centre
contact switches from one contact to
another). The size of the contact pads
depends upon the current and the type of
load in the circuit. For high voltage
switching, the contacts are immersed in
oil to reduce the occurrence of arcing.

The main problem with switches in
interfacing applications is that of bounce.
Most switches contain a spring to keep the
contacts either together or apart. When the
switch is closed, the spring often causes
the contacts to bounce, thus creating a
series of make and break contacts over a
period of a few milliseconds. If any
interfacing circuit should be monitoring the
switch, then it might register the opening
and closing of the switch during bounce
contact. To avoid this, the interfacing
system needs to incorporate switch
debounce circuitry or software logic.

Microswitch

Contact points

In software debouncing, the
program may wait for 10 or 20
msec after first registering an event
and test the switch again before
proceeding.
In hardware debouncing, the
output of the switch can be
processed by a latch circuit. The
output of the latch will only change
state if the inputs change by TTL
level signals.

Newnes Interfacing Companion46

1.4.2 Potentiometric sensor

A potentiometric sensor converts a linear or angular displacement into a
change in resistance. The sensor itself may be made from a coil of wire
over which a moving contact or wiper causes a change in resistance
between the terminals of the device.

A very common application is the fuel level sensor in a motor
vehicle. The sensor adjusts the resistance between its terminals
according to the level of fuel in the fuel tank and thus indicates
the displacement of the surface of the liquid fuel as fuel is
consumed by the engine.

A coil of wire is wound on a
mandrel. If the winding is
uniform and the wire is of a
constant cross-section A and
resistivity ρ, then the
resistance R is:

A
lR ρ=

l is the total length
of wire between A
and B.

A non-linear response can
easily be obtained by
altering the dimensions of
the mandrel. For example,
to show a larger deviation
in R at low fuel level
(increased sensitivity), then
the mandrel can be shaped
or the spacing of the
windings altered
according to position.

float

pivot

mandrel

windings

B

A

A

B

A

B

A

B

A B

Resistance mandrel

A B

471.4 Position and motion

1.4.3 Capacitive transducer

A capacitive sensor converts a change in position or change in properties
of the dielectric material into an electrical signal.

d
AC ε=

Capacitance
(farads)

Overlapping area of
plates (m2)

Distance between
plates (m)

Permittivity = εo εr

Permittivity of free space εo = 8.85×10-12 Fm-1

εr is the relative permittivity of the dielectric

Alteration of any of these
three parameters leads to a
change in capacitance
which may be measured
electrically.

Examples:
1. Overlapping area of semicircular plates alters with

angular displacement of shaft.
The capacitance is proportional to the angular
displacement. Let Ao = area of plate at θ = 0. The
overlapping area A is computed from:

()
180

180AA o
θ−

=
The capacitance is thus:

()
180

180
d
A

C o θ−ε
=

The sensitivity is dC/dθ:

Farads/degree

Note C is linear
w.r.t. θ

θ

A

()

()
d
w

dx
dC

x
d
w

d
AC

o

oo

ε−ε=

ε−ε+ε=

farads/m

2. Change in dielectric property of
material between plates can also be
used.

()
d180

1NA
d
dC o −ε−

=
θ

N is total number of
moving and stationary
plates

w

A

d x

The sensitivity is dC/dx:

Newnes Interfacing Companion48

1.4.4 LVDT

The diagram shows the primary
coil being driven by an
oscillator. If the core moves
upwards the flux linkage to the
upper coil is increased and V1
increases. The magnetic flux
linkage to the bottom coil
decreases and V2 thus decreases.
The displacement of the core is
thus registered as (V2 − V1).

The output voltage also depends
on the driving frequency and
voltage amplitude Vex.

The sensitivity of an LVDT is specified in mV/mm/Vex. Typical range of
displacements is ±0.25 mm to ±250 mm. Typical drive frequency of Vex is
about 1−10 kHz. With proper instrumentation, an LVDT can resolve less
than a nanometre of movement.

Note: Arrangement of secondary coils
means that the voltage induced in each of
them is opposite in polarity:
∆Vout= ∆V1 − ∆V2

Pr
im

ar
y

Secondary
coils

~

O
sc

illa
to

r

Vout

Vex

V1

V2

When the core is at the central or
null position, the output voltage is
zero. As the core is moved above
and below the null position, the
output signal rises and falls the
same amount but undergoes a
change of phase by 180°.

In order to extract the sign (and
therefore the direction of motion),
it is necessary to use a synchronous
demodulation technique. Dedicated
ICs such as the AD698 or NE5521
can be used for LVDT drive and
signal processing functions.

The most commonly used inductive transducer is the linear variable
differential transformer (LVDT). In this device, a core is mounted on a rod
which passes through the centre of a coil and which is connected to the part
to be moved. Changes in the magnetic coupling between the coils convert
a mechanical movement into an electrical output.

LVDT core and coil

491.4 Position and motion

1.4.5 Angular velocity transducer

Electromagnetic induction used to produce a voltage which depends on
the velocity of a coil which moves relative to a fixed magnet (or vice
versa). Some examples are:

Amplitude and
frequency of the output
voltage are directly
proportional to the
rotational speed ω.

Toothed-rotor magnetic tachometer

Magnetic teeth on rotor modifies
the magnetic circuit when the
rotor is rotating. This induces a
voltage in the windings which
surround the magnet.

V

ω
+

Windings on
permanent
magnet.

Drag-torque tachometer (motor vehicle speedometer)
A permanent magnet revolves on a shaft and induces eddy currents in the
disk. These eddy currents themselves produce a magnetic field which
interacts with the rotating magnetic field on the rotor. The net result is a
drag force on the disk which is proportional to the speed of rotation of the
rotor.

The disk is connected to a pointer and a hairspring. The scale is calibrated
to indicate velocity in the desired units (e.g. mph or km/h).

Rotating shaft
or cable

Magnet
attached to
disk

Plain
disk

Plain disk

Magnet

Pointer and
hairspring

Newnes Interfacing Companion50

1.4.6 Position sensitive diode array

A diode array is an assembly of 1024 individual photodiodes in a linear
array. The device is particularly useful for spectrophotometer
applications where light, spread by a prism, is shone onto the array and the
intensity of the wavelength spectrum measured simultaneously. In X-ray
absorption spectroscopy and xray diffraction a diode array is used as a
position sensitive detector (psd) to determine the angle of diffraction of
an xray beam.

25 mm

In the array assembly, a resistance material is placed on one side of a pn
junction. Light impinging on the junction (held in reverse bias with about
12 V) generates a current whose maximum value is at the centroid of the
greatest power density of the incident light. This current flows along the
resistance material to the connecting electrode. The output current signal
thus depends on the total resistance from the electrode to the spot at which
the current is generated.

The output from a diode array
is an analog signal that gives
the distance from the edge of
the array to the centroid of the
incident light spot. The
response of a diode array is
very fast (rise time ≈ 5 µsec)
and the device has very high
positional resolution (≈250
nm) and a linearity of less than
1% of full scale.

Ambient light will cause a signal to be generated in the device
corresponding to the centre of the array. The spot size for the position
being measured should be made as bright as possible without damaging the
photodiodes by heating them excessively. It should be noted that the device
will only respond to the distribution of light that actually falls on the
sensitive elements of the array and so the output reflects the position of the
centroid of the spot received by the array – which might not be the same as
that incident on the device as a whole for a large incident spot.

511.4 Position and motion

1.4.7 Motion control

Linear
encoder

Track

Optical emitter
and photocell

Rotary encoder

Optical
emitter and
photocell

Ruled
slotsA rotary encoder in its most simple form

comprises a disk in which there are slots at
precise regular intervals. The disk is typically
mounted on a shaft whose rotation is to be
measured. The shaft can in turn be part of a
thread with a zero backlash ball nut that
transfers rotary motion into linear motion. The
movement of the disk is measured by a
photocell that detects light from an emitter on
the other side of the disk. The resolution or
step size is the angle between the slots.

Linear encoder
A linear track encoder counts the number of
lines over which is moved an optical emitter and
photocell. This has the advantage of a linear
movement being a measure of the actual
distance moved rather than the rotation of a
geared screw thread. The accuracy depends
upon that of the ruled lines on the track which
are usually in the order of 20 µm spacing.

Positional encoders are usually fitted
to motion control systems to provide
position and velocity feedback to a
PID controller to control motion. The
PID controller in turn generates a
voltage signal that produces a velocity
profile that will ensure that the motion
is accomplished as desired.

Rotary
encoder

t

v

Acceleration to
begin motion

Deceleration
to target
position

Constant
velocity

The output signal from an optical encoder may be a
quadrature signal. The encoder produces two square
waves out of phase by 90o. A motion controller can
then extract four phase changes per cycle leading to a
four-fold increase in step size. Some encoders can
further interpolate the signals from the slots or
gratings by up to a factor of 50. Step sizes of 0.1 µm
are routinely available with these types of encoders.

Q
ua

dr
at

ur
e

en
co

di
ng

Newnes Interfacing Companion52

1. In a capacitance transducer, the capacitance is usually connected to
the input of a charge amplifier. This type of amplifier has a gain
which is not dependent on frequency. Why would this be an
advantage?

1.4.9 Review questions

3. A motorised specimen positioning table has a rotary encoder with
a line count of 2000. It is attached to a lead screw of pitch 2 mm
which translates rotary motion into a linear motion. Calculate the
linear step size (in µm) for the device.

4. A switch is in the process of opening and the open circuit voltage
is 12 V. Compute the electric field strength when the gap between
the contacts is 1 µm.

2. A variable dielectric capacitive displacement transducer sensor consists
of two square metal plates of sides w = L = 5 cm separated by a gap of
1 mm. A sheet of dielectric material 1 mm thick and the same area as
the plates can be slid between them.

d
AC orεε=Hint:

 (a) If the dielectric constant of air is εr = 1 and that of the dielectric
material is εr = 4, calculate the capacitance of the sensor when
the input displacement L − x = 2.0 cm.

 (b) Determine the sensitivity of the device.

w

A

d
x

L

12 V

1 µm

(Ans: 61.85 pF, 5.75 pF/mm)

(Ans: 1 µm)

(Ans: 1.2 × 107 V/m)

531.4 Position and motion

54

1.5.1 Strain gauge

A strain gauge is a metal or semiconductor whose resistance changes
markedly when it is deformed. The deformation is usually taken to be a
measurement of strain, and hence force, applied to a structure.

A
lR ρ=

The resistance of a specimen of material of length l and cross-sectional
area A is given by:

A change in length or area with
strain produces a change in
resistance of a particular element.

If the resistance of a particular
element is Ro with no strain, then the
strain gauge factor G is given by:

L
L

R
RG
o ∆

∆
=

Strain gauge materials are selected so
that changes in resistivity with strain
(piezoresistive effect) are small, and
the geometry is such that the
application of strain results in a large
change in length of the element.
Gauge factors of about 2 are common.

Strain gauges typically carry only a
small current (15 – 100 mA) to avoid
self-heating changes in resistance and
thermal expansion errors.

The strain gauge element typically
forms one leg of a bridge circuit
which is used to measure changes in
resistance of the device.

Strain gauges are commonly
purchased as a metal foil bonded onto
a plastic adhesive film. The film is
attached to the structure whose strain
is to be measured with the “active”
axis of the gauge aligned with the
direction of the expected strain.
Several gauges can be accommodated
in the one film,
each oriented
in a different
direction, to
form a strain
gauge rosette.

Active
axes

ρ is the resistivity

Relative change
in length (strain)

Relative change
in resistance

The sensitivity of the strain gauge
measurement is dependent on the
number of active arms in the bridge.
Strain gauges are available with
nominal resistances from 30 to
3000 Ω. The most common values
are 120, 350 and 1000 Ω.
The output from a strain gauge element will typically respond to changes in
dimension arising from changes in temperature. The thermal expansion
properties of strain gauge material are usually matched to suit the specimen
material.

551.5 Force, pressure and flow

R1 Rg

R3R2

Vo

In one configuration, a strain gauge
element is put into one arm of a
bridge circuit. The output voltage is
given by:

ex
21

2

g3

3
o V

RR
R

RR
R

V

+
−

+
=

At balance, R1R3 = R2Rg and Vo = 0.
When the resistance Rg changes,
there is a change in Vo. The change
in Rg depends upon the gauge factor
G and the strain ε such that:

GRR gε=∆

Letting R1 = R2 and R3 = Rg, the
output voltage for a change ∆R in Rg
is given by:

2G1
1

4
G

V1
2G1

1
2
1V exo

ε+

ε
−=

−

ε+
=

Note that this expression gives a
non-linear output with changing
strain. Before measuring strain, the
bridge must be nulled (or zeroed) in
the absence of any strain. Strain is
then applied, and the output voltage
measured.

Quarter bridge strain gauge circuit

Voltage drops caused by resistance
in the wires connecting the
excitation voltage to the bridge can
be a source of error when the strain
gauge transducer is located some
distance from the signal processing
circuit. A technique called remote
sensing can be used to compensate
for this. With feedback remote
sensing, extra sense wires are
connected to the connection of Vex
to the bridge circuit. These sense
wires are used to regulate or control
the voltage supply so that the
required Vex is obtained at the
bridge. Another method uses a
direct measurement of Vex applied
to the bridge. This measured
voltage is then used as the value for
Vex in the calculations.

Vex

Typical strain gauge circuits use an
excitation voltage of 5 – 10V. The
output signal is in the mV range.
Since very small output voltages are
involved, the resistors that make up
the bridge circuit have to be
precision matched, and the
excitation voltage has to be
extremely stable.

Sense leads

Strain gauges can be calibrated in
the field by using a shunt resistor
of known value which temporarily
replaces a gauge in the bridge and
thus simulates a known strain for
the measurement electronics.

Newnes Interfacing Companion56

1.5.2 Force

The most common type of force transducer is the piezoelectric type. In this
device, force is applied to a piezoelectric crystal such as quartz or lead
zirconate titanate (PZT). The force acting on the crystal displaces the
atoms within it. This displacement results in a net charge on the opposite
faces on the crystal which can then be measured electrically. The charge is
directly proportional to the force.

In a piezoelectric force
transducer, metal plates
are bonded onto the
surface of the crystal. The
crystal is pre-stressed to
provide the capability of
both tension and
compression
measurements.

()()Fdq =

d is the sensitivity of the device (i.e. the amount of charge per
unit of applied force). For quartz, d = 2 × 10-12 C/N.

- - -

- - -

+ + +
+ + +

Force

Crystal

+

Piezoelectric force
transducers are useful
for rapidly changing
forces but their response falls off at low frequencies and are thus often
termed AC devices. Less than a few hertz, a DC force type transducer is
required based upon either a semiconductor or piezoresistive strain gauge.
Deflection of the diaphragm to which the strain gauge is mounted is
registered as an out of balance condition for a bridge circuit.

Piezoresistive
transducer

Piezoelectric
transducer

At low frequencies, the leakage of
charge on piezoelectric devices causes
a reduction in signal thus limiting the
frequency range to greater than a few
Hertz. At higher frequencies, the charge
is continually refreshed by the change
in dimensions of the device and there is
a linear region of operation. At frequencies
larger than the resonant frequency, for
both types of transducers, the mechanical
response of the system cannot keep up with the rate of change of the
applied force and again the response falls off.

ω

O
ut

pu
t

ω
ο

10 Hz

DC

AC

571.5 Force, pressure and flow

For quartz crystals, the capacitance is relatively low leading to a large
change in voltage with a change in charge. The voltage can be measured
with a voltage amplifier with a high input resistance (MOSFET circuitry).
The sensitivity of the transducer is thus determined by the voltage gain of
the amplifier. Such systems have a very good frequency response (1 MHz)
but have a relatively high noise floor.

At high frequencies, the feedback
capacitor limits the response of the
device to about 100 kHz.

C
ry

st
al

F
out C

qdtiV −== ∫

Piezoelectric force transducers provide an output based upon the change of
charge across the faces of the crystal. The capacitance of the crystal
provides a voltage signal according to: .CqV ∆=∆

For ceramic crystals (e.g. PZT) the internal capacitance is fairly high and the
output can be fed into a high impedance input of a voltmeter or oscilloscope.
However, the use of a charge amplifier allows the transducer to have a low
impedance output thus making it far easier to route the signal over relatively
long distances to a high impedance measurement device. By mounting the
charge amplifier very close to the crystal, a very low noise output can be
obtained.

1.5.3 Piezoelectric sensor instrumentation

Charge amplifier

The gain of this amplifier
is expressed as mV/pC and
determines the sensitivity
of the transducer.

C
ry

st
al

R

CMOSFET amplifier Vo

Constant
current
source

When the voltage
across R varies, the
bias voltage across the
MOSFET changes
and the signal is
passed through the
coupling capacitor C
providing a measure
of force.

CF

R

Rx

−

+

Newnes Interfacing Companion58

1.5.4 Acceleration and vibration

Measurement of acceleration is most commonly done mechanically. A
seismic mass is supported by a spring and a dashpot. The mass is connected
to an arm which in turn operates a piezoresistive, capacitive or inductive
displacement transducer element or a piezoelectric crystal. The resulting
output signal gives the acceleration of the reference frame of the device.

2
oo

2 s2s
ax

ω+ξω+
=

s = jω

x is the displacement. The
acceleration is:

kx
dt
dx

dt
xdmF 2

2
+λ+=

m
k;

km2
o =ω

λ
=ξ

Damping ratio

Higher frequency accelerations
(vibrations) can be measured with a
seismic mass attached to a
piezoelectric crystal.

Seismic
mass

Piezoelectric
crystal stack

The governing equation is:

Mass
m kg

Spring
stiffness
k Nm-1

Dashpot
λ Nsm-1

Reference
frame

F

then:

Undamped
natural
frequency.

If:

22 dtxda =

If ωo is known, then the acceleration a can
be found from measuring the displacement
of the mass.

- - -
+ + +

Mass

Crystal

+

- - -
+ + +

x – metres
a – ms−2

ω in rad/sec

ω

=

av
rva;rv 2

=ω=

ω

2
o

1
ω

ω
οa

x

at low
frequencies.

2
o

ax
ω

=

Since

Then: and:
ω

=

vxo

Amplitude of the
vibration (m)

Maximum
velocity (ms −1)

591.5 Force, pressure and flow

1.5.5 Mass

Mass may be measured by balancing the mass with a force. The force can
arise from the deflection of a spring or some other linearly elastic element.
In high quality balance instruments, the displacement is registered
electronically and used in a feedback circuit to control a force actuator
which brings the displacement back to zero. The signal to the force
actuator is taken to be a measure of the mass of the specimen.

High quality mass balance
with displacement
feedback. Digital output
can resolve mass
increments to 0.00001 g.

Mass balances are usually self-contained units fitted with a digital readout
and a computer interface. The computer interface allows the balance to be
configured by sending commands to it in ASCII text, often by serial
communications. Mass values can be obtained by reading from the serial
connection by sending a read command.

The format of a weighing result is usually presented in a particular
format. A typical example is: | |I| | | |-|3|2|.|4|5|6| |g|CR|LF:

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

Identification block
(e.g. I - invalid)

Data block
(e.g. -32.546)

Unit block
(g, %)

CR LF

Newnes Interfacing Companion60

1.5.6 Atmospheric pressure

Units of atmospheric pressure:
N/m2

millibar (=100 N/m2)
mm Hg (mercury at 0 oC and at
g = 9.80665 ms−

2)

Note: The “torr” as used in vacuum
work is 1/760 standard atmospheric
pressure but is not recognised for
measuring barometric pressure.
1 mmHg = 1 torr (named after
Torricelli).

Historically, mercury barometers
were used with a variety of standard
gravities and temperature depending
on the field of application –
meteorology, physics etc. This led,
in 1954, to the introduction of
international standards, an example
of which is BS2520.

Atmospheric pressure
is conventionally
measured with a
mercury barometer
since it provides a
direct reading of
pressure and uses a
dense liquid which
provides for a
convenient height of
the instrument.

Mercury barometers are of two general
categories: Fortin and Kew. In a Fortin

barometer, the mercury surface in a
cistern adjusted to a fixed point prior to

taking a reading – this category also
includes U tube manometers.

h

Mercury levels are
measured from top
of meniscus.

Knurled cistern
adjustment knob

Fixed
point

Standard atmospheric pressure is:
101.325 kPa = 760 mmHg = 29.921 inHg

Mercury level is raised
until surface just
touches the fixed
point in the cistern.

611.5 Force, pressure and flow

The construction of a Fortin barometer is such that it reads pressure
directly when the whole device is at 0 oC and at a gravity of 9.80665 ms−2

(standard conditions).

Correction tables for temperature
allow for thermal expansion of the
mercury (β = 0.0001818), and the
brass scale (α = 0.0000184).

Correction tables for gravity are expressed in terms of the latitude of the
location of the instrument and the height above sea level. The acceleration
due to gravity as a function of latitude φο is given by:

()

β+

α−β
−+=

T1
Trrr TTo

Corrected
barometer
reading

Actual barometer
reading at T °C

The correction to be applied to the barometer reading for standard gravity is:

At a height Z m above sea level and at latitude φ, the acceleration due to
gravity is:

These values of g lead to corrections to the barometer reading taken at a
height Z metres above sea level and at a latitude φ.

If the atmospheric pressure is required at some
point above or below the cistern of the barometer
(i.e. the barometer cannot be easily moved into the
desired position) then a further correction is to be
made for the hydrostatic pressure of the air column
between the two heights.

φ+φ−=φ 2cos0000059.02cos0026373.0180616.9g 2
0,

−+=

φ
φφ 1

80665.9

g
rrr 0,

0,0,n

()Z000003086.0gg 0,z, −= φφ

 rn what the barometer would read if
located where g = 9.80665 m/s2 and
at sea level.

rφ,0 actual barometer reading at latitude
φ and at sea level.

−+=

φ
φφφ

0,
Z,Z,0, g

Z000003086.0rrr

Correction factor

e.g. For a point 1 m
above the cistern,
the correction is
−0.1181 mb, 1 m
below: +0.1181 mb

rφ,0 what the barometer would read at
sea level at latitude φ.

rφ,Z actual barometer reading at latitude
φ and height Z m.

Newnes Interfacing Companion62

1.5.7 Pressure
Simple switch type
The oil pressure switch is
screwed into a drilling from
the outlet side of the oil
pump. The oil pressure switch
consists of a diaphragm which
opens switch contacts if the
oil pressure is sufficient to
overcome the force of an
opposing spring.

Oil under
pressure

Switch
contacts

Diaphragm

Electrical
connector

Bourdon gauge type
The Bourdon gauge consists of a tube bent into a coil or an arc. As the
pressure in the tube increases, the coil unwinds. A pointer connected to
the end of the tube can be attached to a lever and a pointer calibrated to
indicate pressure.

End of tube
moves
according to
pressure

A typical 50 mm diameter
tube has a displacement of
up to 4 mm. Pressures of
about 35 kPa to 100 MPa
are typically measured.
The movement may
translate directly into a
meter movement, or
activate a displacement
transducer that provides
an electrical signal
suitable for computer data
acquisition.

The tube itself is made from
brass and has a flattened
elliptical or rectangular
cross-section.Pressure

applied to
inside of tube

631.5 Force, pressure and flow

Pressure is one of the most important
process variables that need to be
measured in industrial applications. The
most common arrangement makes use
of a diaphragm to which is bonded a
piezoresistive displacement transducer.
Bending of the diaphragm leads to an
imbalance condition in a bridge circuit,
the degree of which is a direct
measurement of pressure.

1.5.8 Industrial pressure measurement

When mounting a pressure transducer, it should be noted that any
mechanical loading (other than the pressure being measured) will cause
a deflection of the diaphragm resulting in an error in the signal. It is
common practice to monitor the output of the device (at zero pressure)
during mounting and tightening to ensure that no mechanical stressing
of the housing and subsequently the diaphragm occurs.

The diaphragms are typically made from stainless steel which allows them
to be used with water and other corrosive fluids. In some applications,
silicon diaphragm sensors are available that are useful for high frequency
measurements. These devices have their strain gauges bonded to them by
atomic diffusion during manufacture.
The diaphragm can also be attached to a piezoelectric crystal. Pressure
transducers of this type incorporate acceleration compensation which
minimises the response of the device to vibration. They are useful for the
measurement of pressure variations occurring under conditions of high static
pressure.

Gauge: The pressure measured relative to ambient atmospheric
pressure.

Absolute: Absolute pressure is equal to gauge pressure added to
atmospheric pressure.

Differential: The pressure measured relative to a reference pressure.
Proof: The maximum pressure that may be applied for the device to

remain within specifications.
Burst: The maximum pressure that may be applied without physical

damage to the transducer.

Different types of pressure

Newnes Interfacing Companion64

1.5.9 Sound

Microphones are pressure transducers designed for rapid changes in pressure
at low amplitudes. For the professional sound industry, the frequency
response and directional characteristics of the microphone are the most
important parameters. Most microphones in use are of the condenser type.

Carbon button
Sound acts on a diaphragm which acts on an enclosed volume of carbon
granules. Contact resistance between the granules depends upon the
pressure. If a DC bias voltage is applied, the alternating resistance
produces an AC signal which is proportional to the sound intensity.

Moving coil
A diaphragm is attached to a coil which moves relative to a fixed
permanent magnet. The voltage induced in the coil is proportional to
the amplitude of the sound wave.

Condenser
A metal diaphragm forms one plate of a
capacitor, the other plate is fixed. Sound
waves cause the diaphragm to move. If the
diaphragm moves towards the fixed plate,
then, if the voltage across the plates is a
constant, this causes an increase in the field
strength between the plates since V = Ed.

Piezoelectric
A diaphragm is attached to a quartz crystal. Displacements of the crystal
arising from sound waves generate output voltage proportional to the
amplitude of sound waves. Some crystal microphones have a preamplifier
in them to reduce noise pickup by leads to the main power amplifier.

An increase in field strength draws more charge onto the plates thus
resulting in a current flow in the connecting wires to the microphone.
When the diaphragm moves away from the fixed plate, the current flow is
reversed. The alternating current has frequency components equal to that
of the incoming sound waves. For high frequency work, an AC carrier
signal is applied across the plates. The sound waves are then represented
by a modulation of the carrier.

651.5 Force, pressure and flow

1.5.10 Flow

The measurement of the flow of gases or liquids can be performed using a
restriction which causes a pressure drop. The volume flow rate is usually
proportional to the square root of the pressure difference. These types of
transducers are called differential pressure or dp flowmeters. They may
employ orifices, nozzles, pitot tubes and centrifugal elbows.

For an incompressible fluid, and
frictionless flow, the theoretical
volume flow rate Qth is:

()
ρ

−

−

= 21
2

1

2

2
th

PP2

A
A1

AQ

For the orifice plate, A2 is the area
of the vena contracta.

For real fluids, but still liquids, a
correction factor C, being the
discharge coefficient, is applied:

thactual CQQ =

p1 p2

p1
p2

Orifice plate

Venturi

D

d

The discharge coefficient depends on
the type of meter (orifice or venturi) and
is usually measured experimentally.

Characteristics:
• No moving parts
• Non-linear
• Permanent

pressure loss

In one type of commercially
available device, a tube is placed
perpendicular to the flow stream.
Holes in each side of the tube
face upstream (high pressure)
and downstream (low pressure)
leading to separate chambers
inside the tube structure. The
pressure differential is measured
and calibrated to provide a flow
rate. The cross-sectional shape of
the tube is optimised to suit a
wide range of fluid
viscosities.

p1

p2

A2

A1

Newnes Interfacing Companion66

Positive displacement flowmeters
and rotating vane type flowmeters
use the physical movement of a
vane or piston as an indication of
flow rate. In a typical device, two
impellers are rotated by the
flowing liquid. Magnets in the
impellers activate an external sensor
which generates a pulsed output signal.
Each pulse represents a known volume
of liquid that is captured between the lobes of the impellers and the pulse
count rate can thus be calibrated to provide flow rate in litres/minute.
There should be enough back pressure on the outlet side of the flowmeter
so that no gas pockets are formed during its operation. The positive
displacement flowmeter is only suitable for liquid flow measurements.

Positive displacement

Turbine
A turbine flowmeter contains a rotating
vane whose angular velocity is measured
and converted into flow rate. This type
of flowmeter is applicable for both liquid
and gas flow measurements and is
suitable for very low flow rates.
Thermal
Mass flow rate can be determined by measuring the temperature drop of
a heated sensor. The technique is suitable for measuring gas and liquid
flow. Some sensors of this type are used as a flow/no flow switch that can
be used to activate safety devices and level sensing. The technique uses no
moving parts.
Ultrasonic
In one ultrasonic method, a beam is directed into the flowing fluid at an angle
and the doppler shift in frequency of the reflected beam is an indication of
flow rate. In another method, the time taken for an ultrasonic pulse to travel
from a transmitter to a receiver downstream is used as a measure of flow.

Turndown is the ratio between the minimum and maximum flow conditions in a
system. A 10:1 turndown ratio means that the maximum flow rate is 10 times the
minimum flow rate in a system. A good flowmeter will be accurate for a turndown
ratio of approximately 150:1.

671.5 Force, pressure and flow

The flowing fluid acts against the mass of the float that is inserted in the
stream. A calibrated scale shows the flow rate directly.

This type of flowmeter is very
sensitive to the arrangement of
inlet and discharge piping
configurations. The inlet
piping should be as large a
diameter as the inlet to the
meter and be as straight as
possible – free from elbows,
kinks and any other
restrictions.

For gas flow measurements,
the outlet or discharge pipe
should be as large as possible
to minimise back pressure.
The gauge markings are
calibrated for an outlet into
standard atmospheric pressure.
For liquid flow measurements,
a moderate back pressure is
permissible.

The flowmeter is
mounted vertically with
the inlet connection at
the bottom of the unit.

Float

This equation governs the physics of streamline or laminar flow.
Bernoulli’s equation

p1
h1

h2

A1

A2

v2

v1

p2
P1

P2
d

2
222

2
111 v

2
1ghpv

2
1ghp ρ+ρ+=ρ+ρ+

2211 vAvA =

Equation of continuity

Bernoulli’s equation

Newnes Interfacing Companion68

1.5.11 Level

The measurement of the level of liquids in tanks is a very important sensor
and transducer application for process control. Various methods are available:

The differential pressure level transducer
measures the pressure difference between
an upper and lower position in a tank (or
the atmosphere for a vented tank), and
knowing the density of the fluid, the height
of the fluid can be determined.

In a float system, the float typically acts upon a displacement transducer
directly or is mounted on a float arm that in turn operates a displacement
transducer. Float systems are mechanical devices that are prone to wear
and corrosion. The displacement transducer can be of the resistive type
that offers a continuously varying signal, or simple switches that indicate
an on/off condition for upper level and lower level limits.

Ultrasonic level transducers determine level by measuring the length of
time it takes for an ultrasonic pulse to be detected by a piezoelectric
transducer after reflecting from the fluid surface. While there are no
moving parts, vapours and turbulence affect the accuracy of the device.

hgp ∆ρ=∆

Pressure
differential

Height of
fluid

• Float
• Differential pressure
• Ultrasonic
• Capacitance
• Radar
• Ultrasonic

In a capacitance type level meter, the wall of the tank is used as one plate
of a capacitor, and an electrode placed in the centre of the tank as the other
forming a capacitor. Changes in level of the liquid (which must be non-
conducting) alter the capacitance (due to a change of permittivity of the
insulating medium or dielectric) of a connecting circuit driven at RF
frequencies. For conductive liquids, the probe is covered with an insulating
sheath (which becomes the dielectric) and a change in level is registered as
a change in capacitance due to a change in effective area between the
probe and the grounded tank walls.
Radar systems work on a similar principle to the ultrasonic type except
that electromagnetic waves are used to determine the time taken for a
reflection from the liquid surface to be received.

691.5 Force, pressure and flow

3. The casing of a compressor is vibrating sinusoidally with a
displacement amplitude of 10−4 m and a frequency of 500 Hz.
Calculate the amplitude of the acceleration.

5. A bellows is used to create a force in a system without contributing
significantly to the stiffness in the system. If the bellows can be
considered a series connection of 5 springs, each of stiffness 1 Nm−1,
calculate the stiffness introduced into the system by the bellows.

9. If the discharge coefficient for a particular orifice plate of 1 cm
diameter inside a 5 cm pipe is 0.78, calculate the differential pressure
for a flow rate of water of 1 litre/sec.

2
oo

2

2
oout

s2sk
1

F
V

ω+ξω+

ω
=

∆

∆

6. The expression describes the sensitivity of a piezoelectric force
transducer. Letting s = jω, determine an expression for the sensitivity
as a function of ω and indicate the general features of this response on
a freehand graph. Assume ωo and ξ are constants.

1.5.12 Review questions

4. Would you expect the resonant frequency of a piezoresistive force
transducer to be above or below that of a piezoelectric force transducer
and why?

1. A strain gauge element has a gauge factor of 2.0 and an unstrained
resistance of 150 Ω. If the change in resistance of the element at
maximum strain is 5 Ω, determine the maximum strain that the element
is designed to measure.

2. Calculate the required spring stiffness k and damping constant λ for an
accelerometer that has a natural resonance at 10 Hz, a damping ratio of
0.8, and a seismic mass of 5 grams.

7. A Fortin barometer is used to measure atmospheric pressure at latitude
53 °N and at a height 10 m above sea level. The vernier scale on the
barometer reads 992.4 mbar and a nearby thermometer reads 19.8 °C.
Calculate the corrected atmospheric pressure.

8. How does flow rate vary with the pressure drop in a restriction type
flow transducer (a semi-quantitative answer please, e.g. square, linear,
exponential etc.).

(Ans: 1.67%)

(Ans: 0.197 N/m, 0.05 Ns/m)

(Ans: 100 g)

(Ans: 989.84 mbar)

(Ans: 8.34 kPa)

Newnes Interfacing Companion70

71

2.0 Interfacing

It is common practice to use a computer to record measurements from a
transducer. Transducers generally provide an analog signal that must be
converted to digital format for data storage and analysis. The connection
between the transducer and the computer is called the computer interface.

In Part 1 of this book,
we are mainly interested
in transducers.
• A sensor is a device

which responds to a
physical stimulus

• A transducer is a
device which converts a
physical stimulus to
another form of energy
(usually electrical)

Physical
phenomena:
Sound
Meter reading
LED indicator
Digital display
Chart recorder
VDU output

Physical
phenomena:
Temperature
Voltage
Position
Velocity
Force
Pressure
Radioactivity
Light intensity
Resistance
Humidity
Gas concentration
Magnetic field
Frequency
Sound level

Actuator
provides a
physical

response to
electrical signal

Actuator

Optional
feedback

Transducer
(sensor and

preamplifier)

Amplifier and
signal

conditioning

Computer
interface

Part 2 of this
book is
concerned with
computer
interfacing.

Part 3 of this
book covers
instrumentation
and signal
processing.

Newnes Interfacing Companion72

73

2.1.1 Binary number system

There are ten digits in the decimal
numbering system. In the binary system,
there are only two, 0 and 1. Each digit in a
binary number is called a bit. Computers
consist of millions of transistor switches
that can be either on or off, or true or false,
and as a consequence they employ the two
available digits in binary number system to
represent the states of these switches.

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Bits can be arranged to provide a
numerical code that can be used to convey
information. A particularly popular code
is the ASCII code used to represent
decimal digits, alphabetic characters.

Since combinations of only two digits are used to represent binary numbers
(i.e. 0 and 1), they tend to be rather cumbersome when large numbers are
to be represented. For example, the number 26 in decimal is given by:

2610 = 11010
A group of 8 bits occurs very frequently in computer
systems and is called a byte. Groups larger than 8 bits,
such as 12 or 16 bits, are called words. The left most
digit in binary representation is called the most
significant bit, or msb, since it has the most weight in
determining the magnitude of the number. The right
most digit is called the least significant bit or lsb.
It is convenient to express large numbers arising from
binary arithmetic by a convenient factor which happens
to be 210 = 1024. For example, 65 536 divided by 1024
is 64 k where the ‘k’ means divided by 1024. For a 24
bit word, we divide 16 777 216 by 1024 twice to obtain:
16M where M means mega. 1024 bytes is one kilobyte
and thus, 640 kb is really 640 × 1024 = 655 360 bytes. 1
megabyte (Mb) is 1 × 1024 × 1024 = 1 048 576 bytes.
64 kb = 65 536 bytes, which, if numbered sequentially,
would be referenced from 0 to 65 535.

Powers of 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512
210 1024
211 2048
212 4096
213 8192
214 16 384
215 32 768
216 65 536

Newnes Interfacing Companion74

The binary numbering system has only two digits, 0 and 1. It is easy to
convert from decimal to binary by repeated divisions by 2. Start towards
the right side of the page and work to the left.
Example: Convert 2610 to binary:

26 Quotient
÷2
13 Answer
0 Remainder

13 26
÷2 2 ÷

6 13 Answer
1 0 Remainder

1 3 6 13 26 Quotient
÷2 ÷2 ÷2 2 2 ÷

0 1 3 6 13 Answer
1 1 0 1 0 Remainder

Repeat until zero obtained as Answer.

The result is given by the Remainder: 2610 = 11010.

2.1.2 Decimal to binary conversion

Transfer Answer to next Quotient column to the left and divide by 2.

For binary to decimal, each binary position, starting at the least significant
bit, represents a power to which the base 2 should be raised – starting from
0. Example: Convert 11010 to decimal:

= 1(24) + 1(23) + 0(22) + 1(21) + 0(20)
= 26

The numbering of bits in a binary number from 0 to 7 starting from the right
and going to the left may seem a little backwards but ensures that each bit is
raised to the power given by the bit position when converting to decimal.

752.1 Number systems

Decimal Hex Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Programming at assembly or machine language levels often entails
working with groups of 4, 8 or 16 bits at a time. For this reason, it is
simpler to use a numbering system which has as its base 4 bits, which is a
maximum of 16 combinations from 0000 to 1111. The hexadecimal
numbering system is based on 16 combinations of 4 bits and uses letters to
signify numbers greater than decimal 9. Thus, single digit numbers go from
decimal 0 to 9 but letters A through F are used to represent numbers greater
than 9. The term “hexadecimal” is a combination of hex meaning six and
decimal meaning, of course, ten.

2.1.3 Hexadecimal

Hexadecimal (hex) numbers may be written with a leading $ sign to
distinguish them from decimal numbers. For example, $FF is decimal 255
or 1111 1111 in binary. Binary numbers may be specified with a leading
% and decimal integers with . which in this case is not to be taken as a
decimal point. Hex and binary numbers may also be represented by a
trailing “h” or “b” respectively.

Note: We are only
concerned with integer
numbers here.
Methods of expressing
fractions need not
concern us for the
moment.

Newnes Interfacing Companion76

2.1.4 Decimal to hex conversion

Repeated divisions by 16. Start at right of page and work towards left. Stop
when 0 obtained as answer. The result is given by the Remainder.
Example: Convert the number 26 to hex:

Convert from decimal to hex:

1 26
÷16 ÷16
0 1 Answer
1 10 Remainder

Answer: 1A (10 becomes A in hex).

Each binary position, starting at the least significant bit, represents a power
to which the base 16 should be raised – starting from 0.
Example: Convert 1A to decimal:

Convert from hex to decimal:

1A = 1(161) + 10(160)
 = 26

Convert from hex to binary:

Arrange each hex digit in groups of four and use
the hex table.
Example: Convert 1A to binary:

 1 A
0001 1010

Answer: Obtain binary equivalents from hex
table and write the binary in groups of four. This
group of 8 bits is called a byte. The answer is
0001 1010 and the leading zeros can be
discarded if desired. However, it is sometimes
convenient to keep the binary digits grouped in
lots of four and we write: 0001 1010. The
groupings are for our convenience only.

Dec Hex Bin
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

772.1 Number systems

2.1.5 2’s complement

The 2’s complement is a special operation performed on a binary number
which yields a new binary number, the significance of which will be
explained shortly. The 2’s complement is found by reversing all the bits in
a binary number (called the complement or the 1’s complement) and then
adding 1 to the result. Example: What is the 2’s complement of 13?

Original number 13
invert all bits
add 1
2’s complement

It so happens that the 2’s complement can be used to
represent the negative of a positive integer thus allowing a
computer to perform a subtraction with a digital adding
circuit. Taking the 2’s complement of a number twice
returns to the original number.

The binary
number in this
row is called
the “1’s
complement”

The computer stores the mantissa and the exponent in different places. In a
simplified system, the mantissa may occupy 4 bytes of storage followed by
a 1 byte exponent. Decoding of this format is typically done in software,
although a specialised maths co-processor chip is fitted to most
microcomputers to perform these conversion routines in hardware, and
thus more quickly.

Note that in our discussion so far, we have always been working with
integers. Indeed, that is the only type of number that computers can work
with. However, we need to represent fractions and very large numbers as
well in everyday computing applications. How is this done? Briefly, the
computer divides up numbers into two parts called the mantissa and the
exponent. The format is very similar to scientific notation used by
scientists and engineers. The number 7 × 105 (sometimes written 7E5) is
700 000. In this example, 7 is the mantissa and 5 is the exponent.

7 ×105

Exponent

Mantissa

0 0 0 0 1 1 0 1
1 1 1 1 0 0 1 0

1
1 1 1 1 0 0 1 1

Newnes Interfacing Companion78

An 8-bit memory location can cover the range of decimal integers from 0
to 255. To enable an 8-bit memory location to hold both positive and
negative numbers, the most significant bit (msb) is reserved and is called
the sign bit. A sign bit = 1 indicates a negative number. A sign bit = 0
indicates a positive number. The other 7-bit positions are used to represent
the magnitude of the number − but the way of doing this is different for
positive and negative numbers.

1. Positive numbers: The
remaining 7-bit positions
represent the magnitude of
the number directly. 7 bits
give a range 0 to +127.

0 0 1 0 1 0 0 0
0 msb indicates a positive
number. The magnitude of
the number is 23 + 24 = 40.

2. Negative numbers are
represented in 2’s complement
notation. Example: −40 is:

40 in binary notation
complement:
add 1
−40 in 2’s complement:

The sign bit (msb) indicates a
negative number.

2.1.6 Signed numbers

For signed number
representation, the
range that can be
covered by 8 bits is
−128 to +127.
Signed positive
binary numbers roll
over to represent
negative numbers
after +127.

7F 0 1 1 1 1 1 1 1 +127
.
.
. 2
. 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
FF 1 1 1 1 1 1 1 1 -1
. 1 1 1 1 1 1 1 0 -2
.
.
80 1 0 0 0 0 0 0 0 −128

Whether or not a particular binary bit pattern represents a signed or
unsigned number depends on the context in which it is being used. For
binary numbers starting with 0, there is no confusion since they have the
same value whether they are signed or unsigned numbers. For numbers
starting with 1, they may be interpreted as an unsigned integer or the 2’s
complement representation of a negative number.

The +1 step in finding the 2’s complement takes into account ±0 possibilities
(i.e. 1’s complement goes from −127 to −0, and +0 to +127).

00101000
11010111
 1
11011000

792.1 Number systems

2.1.7 Subtraction and multiplication

For a subtraction, the 2’s complement is
added. Example: 43 − 40 = 43 + (−40)

00101011 +43
11011000 −40 in 2’s complement
100000011 answer = 11 (i.e. 3)

The extra bit on the left in the
answer is called the carry bit.
The carry bit is ignored in
signed arithmetic but not in
unsigned arithmetic.

Example: 40 − 43 = ?

00101000 +40
11010101 −43 in 2’s complement
11111101 add to find answer

The msb is a sign bit which in
this case indicates a negative
number. To find out what this
number is in decimal, we
need to find the inverse 2’s
complement.

11111101 answer from above
00000010 complement
 1 add 1
00000011 final answer is −3

Note that the final answer in
decimal is −3 since the sign
bit indicated that the number
being stored was a negative
number.

Convert answer from above into decimal:

Multiplication and division by 2 in the binary number system is very easily
done by a shift. Consider the product 2 × 4 = 8. Now, 410 = 0100 and shift
to the left, gives 1000 (810). A shift to the right is a division by 2.
Multiplications with other numbers in binary is
performed in exactly the same way as for decimal
numbers e.g. 12 × 6 = 8.

1 1 0 0 multiplicand 1210
0 1 1 0 multiplier 610
0 0 0 0 x by 0 with no shift

1 1 0 0 x by 1 and shift left
1 1 0 0 x by 1 and shift twice

0 01 0 0 0 x by 0 and shift thrice
1 0 0 1 0 0 0 + for final result = 72

Start by multiplying the multiplicand by the lsb of the
multiplier. Repeat with other bit positions of multiplier
and shift answers left one position each time.

This is analogous to
positioning of
decimal digits in the
1’s, 10’s and 100’s
columns.

Multiplication involves
repeated shifts left and
additions. The process
of division is very
similar except that it
involves repeated
subtractions of the
divisor.

Multiplication

Subtraction

Newnes Interfacing Companion80

2.1.8 Binary coded decimal (BCD)

Coding schemes are used to represent data in binary format. Although
numbers may be expressed in the binary system directly, it is sometimes
more convenient to use a coding scheme. A very well-known scheme for
numerical data is the binary coded decimal system. The BCD code uses
binary numbers 0 and 1 to represent decimal numbers 0 to 9. Each digit in
a decimal number is transcribed into a 4-bit binary number.

Decimal BCD
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Note: Binary numbers above
1001 are not a part of the BCD
system.

The main advantage of the BCD system
is that the binary numbers in BCD are
easily recognised and converted into
decimal numbers because of their
position.

The main disadvantage is that arithmetic
operation on BCD encoded data is not so
easily performed. BCD adders are
required to perform arithmetic
operations.

Consider the decimal number 2563. To represent this number in BCD is
fairly straightforward. We simply write the binary numbers out in
sequence for each digit in the decimal number.

0010 0101 0110 0011
 2 5 6 3

Each decimal number from 0 to 9 is represented by a four digit binary
number. The weight, or contribution, of the msb in each binary number
is 23 = 8. The weight of the lsb is 20 = 1. The weights of the other two
bit positions are 22 = 4 and 21 = 2. The BCD code is sometimes referred
to as an 8421 code for this reason.

812.1 Number systems

2.1.9 Gray code

The Gray code is well-known code originally used for encoding the
angular position of a rotary encoder. Such an encoder may be constructed
by a masked wheel whose concentric tracks are read by photo cells.
The main problem with the binary
number system in this type of encoder
is that there are many positions in
which several tracks change their state
at the same time. Thus, if a read
operation occurs part way through a
transition from one angular position to
another, then the resulting error could
be quite large.

Dec Hex Bin Gray
0 0 0000 0000
1 1 0001 0001
2 2 0010 0011
3 3 0011 0010
4 4 0100 0110
5 5 0101 0111
6 6 0110 0101
7 7 0111 0100
8 8 1000 1100
9 9 1001 1101
10 A 1010 1111
11 B 1011 1110
12 C 1100 1010
13 D 1101 1011
14 E 1110 1001
15 F 1111 1000

To convert from binary to Gray, we
start at the msb and compare it to 0.
If the msb is 0, then we write 0 as
the msb for the Gray coded number,
otherwise we write 1. We next
compare the next msb and compare
it to the msb. If they are equal we
write a 0 in the position for the Gray
coded number, otherwise, 1. We
then compare each bit in the binary
number to the bit just to the left of it
and write 0 for a true comparison
and 1 for a false. This procedure
continues until the lsb is compared
with the second bit.

0000
0001

0011

0010

0110

0111
0101

01001100
1101

1111

1110

1010

1011

1001
1000

In the Gray code, only one track changes state at any one time during a
rotation. Should a read error occur, then the resulting number will be in
error by only one bit value. The Gray code is a non-weighted code. Any
binary number can be converted into the Gray code, there is no upper limit
to the number of code combinations. Conversion from Gray to binary can
easily be done in a computer and so this code makes it ideal for this type
of instrumentation purpose.

Gray code

Newnes Interfacing Companion82

2.1.10 ASCII code

The ASCII code is almost universally used to represent both numeric,
character and special symbol data. The code is, in its standard form, a 7-bit
code. 7 bits gives 128 different combinations. The 8th bit is sometimes
used as a parity bit for error detection. In the extended ASCII character
set, the 8th bit (or msb) is used to create another 128 characters that contain
mathematical and other special symbols.

0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ‘ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y I y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS ‘ < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

msb

lsb

7-bit ASCII code

Example: The number 4F, or 100
1111, is the letter ‘O’.

The first 32 characters in the code are control codes. These codes are
interpreted by the device to which the data is being sent. For example, a
printer receiving a CR code would execute a carriage return. Many
microcomputer applications store their data in ASCII format. It is probably
the most universally used method of representing numeric and character
data for both storage and transmission purposes.

832.1 Number systems

True False
High Low
Mark Space
On Off
0 1
5 V 0 V

Binary system:

A

B

AND gate

Output = 1
(TTL High)
when A and B
are both 1

NOR gate

Output = 1
(TTL High)
when neither A
nor B are 1

A

B

Digital electronic circuits contain components which act like high speed
switches that process voltage levels TTL high (5 V) and TTL low (0 V).
These circuits are thus suitable for representing the binary numbers 0 and 1.
TTL high and TTL low may also represent logic states true and false and
thus allow binary data to be processed using Boolean algebra in a digital
circuit. The components of a digital circuit are called logic gates. Boolean
algebra are laws which specify the interaction between logical states true (1)
and false (0). Truth tables provide the rules for the Boolean operators.

2.1.11 Boolean algebra

A B A AND B A•B
0 0 0 Output true
0 1 0 only if both A and B
1 0 0 are true
1 1 1

A B A OR B A+B
0 0 0 Output true
0 1 1 if either A or B are
1 0 1 true
1 1 1 OR

AND

A B A NAND B
0 0 1 Output true if
0 1 1 both A and B are not
1 0 1 true
1 1 0

A B A NOR B
0 0 1 True if A and B
0 1 0 are both not true.
1 0 0
1 1 0

A B A XOR B
0 0 0 True if either A or B
0 1 1 are true but not both
1 0 1 together.
1 1 0

NAND

NOR

XOR

Newnes Interfacing Companion84

Boolean algebra can be implemented using digital electronic circuits using
combinations of logic gates.

A

B

A XOR B

In the circuit below, the XOR
function is used to add binary digits
A and B. The AND gate indicates
whether or not there is a carry bit.
This circuit is a half adder.

A B O
0 0 0
0 1 1
1 0 1
1 1 0

Truth table

A

B

Sum

Carry

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Truth table

2.1.12 Digital logic circuits

e.g. A combination of NAND gates
gives a logical XOR function.

A + B = B + A
B • A = A • B

(A + B) + C = A + (B + C)
(A • B) • C = A •(B • C)

A + AB = A •(1 + B) = A
A •(A + B) = A

A •(B + C) = A • B + A • C
A + (B • C) = (A + B) •(A + C)

A + A = A
A • A = A

A + A • B = A + B
A •(A + B) = A • B

De Morgan’s theorem
(A + B) = A • B
(A • B) = A + B

Laws of Boolean algebra

A • A = 0
A + A = 1
A = A
0 + A = A
1 • A = A
1 + A = 1
0 • A = 0

852.1 Number systems

1. How many numbers may be represented by a sequence of 8 binary
digits?

2. Shown below are some decimal numbers. Fill in the columns assuming
2’s complement notation.

Decimal Binary Hex
-1 . .
127 . .
28 . .

3. Fill in the table below (assume 2’s complement notation).
Binary Decimal Hex
1010 . .
. . 80
. . FF

4. Find the two’s complement of $0E and show that by finding the 2’s
complement twice the original number is returned.

5. Consider the bit pattern 1011 1101. Determine another bit pattern
(called a mask) which, when logically combined (using a Boolean
expression) with the first, toggles the second most significant bit (from
0 to 1 or 1 to 0) but leaves the others unchanged.

2.1.13 Review questions

7. Design a logic circuit which implements the XOR function but using
OR and NOR gates only.

6. Discuss the relative differences of the Gray code, the BCD code, and
the ASCII code.

8. Draw up the simplest logic
circuit satisfying the truth table
given:

A B C
0 0 1
0 1 0
1 0 1
1 1 1

Newnes Interfacing Companion86

1. Start the Microsoft Windows Calculator and set to scientific mode.
Then select BIN for binary mode and WORD.

3. Perform a decimal subtraction using the Calculator which gives a
negative result (say 8-10). Convert the answer to Hex and then to
binary. What is the significance of these answers?

Dec:
Hex:
Bin:

2.1.14 Activities

4. Consider the product 2 × 4 = 8. Verify that this multiplication, when
performed in Binary mode using the Calculator, is the same as the one
shift to the left of the binary representation of the decimal number 4
(you may need to find out how to use the “shift left” function of the
Calculator using the Help topics).

5. Consider the bit pattern 1011 1101. Determine another bit pattern (a
mask) which, when logically combined (using a Boolean expression)
with the first, toggles the second most significant bit (from 0 to 1 or 1
to 0) but leaves the others unchanged. Use the Calculator to test this
(using the Boolean operator keys).

2. Set the Calculator to HEX
mode and set to BYTE and
then type in FFFF. Convert
this number to Decimal and
then Binary by selecting the
appropriate buttons:

Dec: ____________

Bin: _____________

Add the two 16-bit numbers below by first adding manually on paper
and then using the calculator:

1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0
1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0

872.1 Number systems

88

The combination of functional components in a computer is referred to as
the architecture of the microcomputer. The main functional components
in a microcomputer are the CPU or central processing unit, memory, and
input/output (I/O) devices:

2.2.1 Computer architecture

Each memory cell is capable of
holding 8 bits, or 1 byte, of data.
Memory cells are labelled with a
unique address.

Binary information is transferred as
TTL logic across wires called the
bus – the address bus, the data bus
and the control bus. When an
address is placed on the address bus,
the byte of information at or for that
memory location is placed on the
data bus. Signals on the control bus
tell the CPU whether a read or write
operation to that memory cell is
required.

CPU
I/O

Data bus

Address bus

Control
bus

The data bus in the 8086 CPU is
16 bits wide and is bi-
directional. It can transfer data
in both byte and word length to
and from the CPU and memory.

The address bus is unidirectional in
that data is placed on it only by the
CPU. The 8086 chip has a 20-bit
address bus but the internal registers
of the CPU are only 16 bits. A
special segmented memory
addressing scheme is used to obtain
access to the full 1 MB memory.

The control bus carries various
synchronisation and control
signals, the only one of interest to
us being the read/write signal.
This is designated R/W (read/not
write). During a read cycle, the
processor receives data from
either memory or a memory-
mapped peripheral device. During
a write cycle, the processor sends
data to either a memory cell or a
memory-mapped device.

The data bus is nominally 16 bits, but
in 8088 machines, it is physically only
8 bits wide. Internally, the CPU
transfers 2 bytes in sequence and
operates as a 16-bit device. To
further complicate matters, the data
bus and the first 8 lines of the
address bus on the 8088 are
multiplexed (the same wires are
used for both functions - but at
different times). Later processors
employ data buses up to 64 bits wide.

892.2 Computer architecture

00F101 32
00F100 D3
00E111 32

Address data

2.2.2 Memory

Each memory cell is capable of holding 8 bits, or 1 byte, of data. Memory
cells are labelled with a unique address. When the microprocessor wishes
to read or write data to a particular memory cell, it places the address of
the required cell on the address bus, and the data to or for that memory
location appears on the data bus. Internal circuitry ensures that only the
memory cell whose address appears on the address bus receives or sends
the data from or to the data bus.
The amount of memory that can be addressed by the
CPU depends on the width of the address bus. The
Intel 8086 CPU has a 20 bit address bus and is able to
address a total of 220 = 1 048 576 bytes (1MB of
RAM). Each memory cell is numbered $00000 to
$FFFFF. However, the internal working registers in
the 8088 are only 16 bits wide and a special
segmented memory addressing scheme is used to fit
the 20-bit address data into the 16-bit registers. In
contrast, the 80286 has a 24-bit address bus allowing
16 MB adressable RAM. Later processors employ a
32-bit address bus (486) giving 4 GB addressable
memory while Pentium Pro and later processors have
64 GB addressable memory.

Program statements
are always stored in
the code segment.
Data for programs is
stored in the data
segment etc.

Memory is divided into a number of segments, each of which is 64 kb in size:
• Code segment
• Data segment
• Stack segment
• Extra segment

Each segment is 64 k. Since the total address
space is 1 048 576 bytes, there are a possible
1 048 576 /65 536 = 16 segments.

0 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4-bit segment
identifies one of
16 possible
segments of
memory.

16 bit Offset identifies each of
the 65536 individual memory
locations in each segment.

Thus, to specify a particular
location in memory, all we
need is a 4-bit segment base
address and a 16-bit offset.

Low
memory

High
memory

Unfortunately, it is not that simple. Segments need not start on the 64k boundaries
shown above. Indeed, segments can start anywhere on a 16-bit boundary since the
full 16-bit width of the CPU internal registers can then be utilised.

Newnes Interfacing Companion90

Here’s how segmented memory really works:

1. The 16-bit segment is multiplied by 16 to form a
20-bit segment base address by shifting to the
left four times.

Segment base
address (20 bits)

2. The 16-bit offset is added to the
segment base address to obtain
the 20-bit absolute address.

1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0
_ _ _ _ 1 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0
1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0

+
Final 20 bit
address

16-bit offset

Note: Since segments can be
specified with any 16-bit number, it is
possible to have two different
segmented addresses which refer to
the exact same physical memory
location! For example, 0010:0000 is
the same as 0000:0100 which is
memory location 100H.

3. The segmented address is
written with the segment
followed by a colon “:” and
then the offset. For example:

FFE2:01D0

Segment Offset

Why is it useful to have segments start
at any 16-bit address boundary? It
permits a more efficient use of memory.
For example, a particular program may
not need a full 64k code segment.
Some of this available memory may be
used as the data segment by allowing
the segments to overlap. By allowing a
16-bit number to specify the segment
(instead of a 4-bit number), the start of
each segment can be controlled to
within a 16-bit boundary (instead of a
64 k boundary).

This example shows how the Stack
Segment can be accommodated
within a 64K block which is only
partially used by the Code Segment.

64k
CS

SS

actually
usedavailableThe number obtained after the

segment has been added to the
offset is called the absolute
address.

2.2.3 Segmented memory

Segment: 1010 0111 1010 0100

Offset: 1000 1001 1100 1110

912.2 Computer architecture

Each memory cell can store 8 bits, or 1 byte, of data. The width of the data
bus indicates how much data can be transferred during each memory
read/write operation. The 8088 CPU has an 8-bit data bus but can
actually process 16 bits at a time using its 16-bit internal registers. The
80286 has a full 16-bit data bus. The 80486 has a 32-bit data bus and
Pentium processors have a 64-bit data bus.

Groups of bits larger than a byte are
called words. In a 16-bit machine,
the term word is used to describe
16-bit (2-byte) data and the term
long word or double words for 32-
bit (or 4-byte) data. In the 8086
architecture, words are stored in
memory with the higher byte in the
higher numbered address.

In the example here, referencing a
word at 06000H, one would
obtain: 3E01H. When words and
double words start at an address
that is a multiple of 4, they are
aligned.
Double words take up four
memory locations and are stored
with the higher word at the higher
address pair. Within each word,
the higher byte is stored at the
higher numbered address. It is
usual to write memory addresses
from the bottom upwards.

Data Logical (1s and 0s indicating T and F) or
Numeric – signed or unsigned integers as binary numbers.

Instructions An assembly or machine language opcode.
Address A “pointer” to which the CPU goes to get the data required.

06001 3E
06000 01

Address data

The width of the address bus on the
MC 68000 chip is effectively 24 bits (3
bytes). (On the 68000 chip, the
address bus is only 23 bits wide
numbered A1 to A23 with an internal
A0 bit which controls the way the 16-
bit data bus is used. The effective bus
width is thus 24 bits.) The number of
addressable memory locations is:

which are numbered from 0 to
16 777 125 or in hex $000000 to
$FFFFFF. Each address refers to a
data space of one byte (or 8 bits)
giving 16 MB of RAM.

No. addresses = 224

= 16 777 216

68000

2.2.4 Memory data

The contents of memory are interpreted by the CPU as either:

Newnes Interfacing Companion92

2.2.5 Buffers

Binary signals are transmitted between the CPU and memory cells across
the address and data buses. Proper communication of data requires that one
and only one memory cell, the one whose address is present on the address
bus, has direct connection to the data bus at any one time. Decoding
circuitry determines the location of the desired memory cell to be
activated. Activation of a single memory cell entails connecting the cell to
the data bus and ensuring that all other cells are effectively disconnected.
This connection procedure is carried out by tri-state buffers.
The table below shows that the connection between the data bus and a
memory location must be set at a high impedance when the chip-select
signal CS is low and pass through the data when chip-select is high.

Data CS Connection
0 0 High impedance
1 0 High impedance
0 1 0
1 1 1

Buffers isolate memory cells from the data bus and also allow data to pass
through during read/write operations. Since the data bus must pass data in
both directions, its connections to the bus and the memory cell must be
capable of being at TTL high and TTL low (to represent logic levels 0 and
1). When a memory location is not selected (by the decoders), the buffer
must effectively disconnect the memory cell from the data bus by inserting
a high impedance. The term tri-state means that the connection made by
the buffer can be either TTL high, low or high impedance.

Q1 Q2 Output
Off Off High impedance
Off On 0 V
On Off +5 V

+5 V

Q1

Q2
Output

Inputs

A simple example of tri-state logic can be
made using two transistors as shown:

932.2 Computer architecture

2.2.6 Latches

A latch is a device which holds the data that appears on its input terminals.
A memory cell in the microcomputer system is a latch. Typically, signals
destined for storage in memory cells appear on the data bus momentarily
and then disappear. The timing of the signals is regulated by the internal
clock which runs at speeds typically in the MHz range. The decoding
circuitry determines which buffer is to be activated. The activated buffer in
turn connects the latch input terminals to the data bus. The signals on the
data bus are transferred through buffers to the latch circuit which stores the
signals on its output terminals.

An octal latch has 8 inputs and 8
outputs. The data latch enable (DLE)
pin, when set high, copies the voltage
levels on the input pins to the
corresponding output. The latch
circuitry retains the signals on the
output pins even if the input signals
disappear and DLE goes low. It is
important that DLE is set when data
appears on the input. DLE is
typically timed to go high when data
appears on the data bus. The clock
signals are used to synchronise this
timing.

A latch circuit can be implemented
using a series of RS flip-flops. In
this figure, the 4 bit data at D3 to D0
is transferred to Q on the clock
pulse. When a bit D is logic 1,
S = 1 and R = 0 and the output Q
becomes 1. When D is logic 0, S = 0
and R = 1 and the output D = 0.

Q2

Q

D2 S

R

Q1

Q

D1 S

R

Q3

Q

D3

Qo

Q

Do S

R

Clock (DLE)

S

R

4 bit latch

Newnes Interfacing Companion94

Flip-flops can be used to represent binary numbers. An RS flip-flop is a
digital circuit which is stable in one of two states − set or reset. Such a
circuit can be made using NAND gates. A truth table summarises the
action of flip-flop. The voltage of one of the outputs can be used to
represent or store a binary digit since it can be either voltage high (logic 1)
or low (logic 0) and will remain at that setting until signals on the input,
which only last for a short time, set or reset the outputs.

A microcomputer uses a clocked flip-flop to synchronise the action of the
circuit.

Data at terminal S gets
transferred to Q on the
clock pulse and remains at
Q even if the signal at S
disappears and the clock
goes low.

S

R

The data stays at Q because
when the clock pulse goes low,
the flip-flop circuits within the
chip are at S = R = 1 (due to the
NAND gates on the clock stage).
Only when the clock goes high
do the flip-flops react to the logic
signals at D on the latch.

R S
0 0 not used
0 1 Q = 0; Q = 1
1 0 Q = 1; Q = 0
1 1 no change

Action table (RS):

R S
0 0 no change
0 1 Q = 1; Q = 0
1 0 Q = 0; Q = 1
1 1 not used

Action table (clocked RS):

Note: This action table is different to
the ordinary NAND flip-flop. Here,
R = S = 1 is the “not used” state.

2.2.7 Flip-flop

S

R

Q

Q

clock

Q

Q

952.2 Computer architecture

There are three methods of handling input/output devices. The first is by
the use of ports. In an 8088-based microcomputer, ports are identified
using a 16-bit port number. Thus, there are a total of 65 536 available
ports numbered 0 to 65 535. The CPU uses a signal on the control bus to
specify that the information on the address bus and data bus refers to a port
and not a regular memory location. The port with the specified number
then receives or transmits the data from its own inbuilt memory which is
not part of the main computer’s memory. However, some devices use
main memory for their own use and thus data for these devices may be
specified using regular memory addresses. This is the second method used
for I/O. Such devices (e.g. video adaptors) are called memory-mapped
I/O devices.

This list shows the range of input
and output devices for a typical
desktop microcomputer. These
devices may often by memory-
mapped and data is written
from/to them via interface
adaptors. Some ports are not
memory mapped and a signal on
the control bus identifies to the
CPU that the address is that of a
port and not a memory location.

The third method of I/O involves
bypassing the CPU and writing or
reading directly from memory. This is
called direct memory access or DMA.
A special DMA controller IC is used to
regulate traffic on the bus for this
activity. A computer’s disk drive
usually transfers data to or from
memory using DMA.

2.2.8 Input/Output (I/O)

Part of the success of the original
IBM PC and the Intel
microprocessor family was due to
the use of open architecture,
made possible by the expansion
bus. The original ISA (Industry
Standard Architecture) provided a
16-bit bus. The introduction of the
Pentium CPU also saw the
introduction of the PCI (Peripheral
Component Interface) bus. This
bus supports 32-bit and 64-bit
data transfers with an increase in
data transfer rate over the ISA
bus.

ISA and PCI bus

Newnes Interfacing Companion96

The CPU is responsible for initiating transferring data to and from
memory and input/output devices, performing arithmetic and logical
operations, and controlling the sequencing of all activities. Inside the CPU
are various subcomponents such as the arithmetic logic unit (ALU), the
instruction decoder, internal registers and various control circuits which
synchronise the timing of various signals on the buses.

The central processing unit organises and orchestrates all activities inside
the microcomputer. Each operation within the CPU is actually a very
simple task involving the interaction of binary numbers and Boolean
algebra. A large number of these simple tasks combine to form a particular
function which may appear to be alarmingly complex.

The “MPU” is essentially the same thing as the more
familiar and general term “CPU” (CPU applies to any
computer, and not just a microcomputer).

Instruction decoder
Arithmetic logic unit
Registers

Address registers
Pointers
Flags
Instruction pointer

2.2.9 Microprocessor unit (MPU/CPU)

80X86 CPU development
1972 Intel introduces the 4004 with a 4-bit data bus, 10,000 transistors.
1974 8080 CPU has 8-bit data bus and 64 kb addressable memory (RAM).
1978 8086 with a 16-bit data bus and 1 MB addressable memory, 4 MHz clock.
1979 8088 with 8 bit external data bus, 16-bit internal bus.
1982 80286, 24 bit address bus, 16 MB addressable memory, 6 MHz clock.
1985 80386DX with 32-bit data bus, 10 MIPS, 33 MHz clock, 275 × 103 transistors
1989 80486DX 32-bit data bus, internal maths coprocessor, >1 × 106 transistors,

30 MIPS, 100 MHz clock, 4 GB addressable memory.
1993 Pentium, 64-bit PCI data bus, 32-bit address bus, superscalar architecture

allows more than one instruction to execute in a single clock cycle, hard-
wired floating point, >3 × 106 transistors, 100 MIPS, >200 MHz clock, 4 GB
addressable memory.

1995 Pentium Pro, 64-bit system bus, 5.5 × 106 transistors, dynamic execution
uses a speculative data flow analysis method to determine which instructions
are ready for execution, 64 GB addressable memory.

1997 Pentium II, 7.5 × 106 transistors with MMX technology for video applications
64 GB addressable memory.

1999 Pentium III, 9.5 × 106 transistors, 600 MHz to 1 GHz clock.
2000 Pentium 4, 42 × 106 transistors, 1.5 GHz clock.
2001 Xeon, Celeron processors, 1.2 GHz, 55 × 106 transistors.

CPU

972.2 Computer architecture

The 8088/6 CPU has 14 internal registers. All the registers are 16 bits.
Registers are used to hold data temporarily while the CPU performs
arithmetic and logical operations.

__ __ __ _ AH _ __ __ __ __ __ __ _ AL _ __ __ __
__ __ __ _ BH _ __ __ __ __ __ __ _ BL _ __ __ __
__ __ __ _ CH _ __ __ __ __ __ __ _ CL _ __ __ __
__ __ __ _ DH _ __ __ __ __ __ __ _ DL _ __ __ __

15 0

AX
BX
CX
DX

Data
registers

2.2.10 Registers

• AX is the accumulator and is used as a temporary storage space for
data involved in arithmetic and string (character) operations.

• BX is the base register and is often used to hold the offset part of a
segmented address during memory transfer operations.

• CX is the count register and is used as a counter for loop operations.
• DX is the data register and is a general purpose 16-bit storage

location used in arithmetic and string operations.

The data registers may be divided into two 8-bit registers depending on
whether the CPU is working with 8-bit, or 16-bit data. Within the 16-bit X
registers, the 8-bit registers are AL, BL, CL and DL, and AH, BH, CH, and DH.
Each half of the X registers may be separately addressed using L and H labels.

CS
DS
SS
ES

Segment
registers

__ __ __ __ __ __ __ __ __ __ __ __ __ __ __
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __

15 0

• CS is the code segment and contains the base address of the segment of
memory that holds the machine language program that is being executed.

• DS is the data segment and contains the base address of the segment of
memory where current data (such as program variables) are stored.

• SS is the stack segment and contains the base address of the stack
segment which is used to hold return addresses and register contents
during the execution of subroutines within the main program.

• ES is the extra segment and contains the base address of the extra
segment which is used to supplement the functions of the data segment.

Newnes Interfacing Companion98

IP
SP
BP
SI
DI

Offset
registers

__ __ __ __ __ __ __ __ __ __ __ __ __ __ __
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __

15 0

• IP is the instruction pointer (or program counter) which provides the
offset address into the code segment (CS) for the address of the next
instruction to be executed in a machine language program.

• SP is the stack pointer and together with the base pointer (BP) provide
the offset into the stack segment (SS). This is the current location of the
top of the stack.

• BP, the base pointer, is used in conjunction with the stack pointer to
provide an offset into the stack segment.

• SI and DI are index registers and are used (usually in conjunction with a
data register) to provide an offset into the data segment for the
processing of long string characters.

__ __ __ OF DF IF TF SF ZF __ AF __ PF __ CF

Flags

Carry flag arithmetic carry out
Parity flag even number of 1s
Auxiliary carry flag used for BCD arithmetic operations
Zero flag zero result or equal comparison
Sign flag negative result or not equal comparison
Trap flag generates single-step operation
Interrupt enable fag interrupts enabled
Direction flag decrement/increment index registers
Overflow flag arithmetic overflow

Flags are individual bits which are used to report the results of various
comparisons and processes done by the CPU. Program statements may
then branch depending on the status of these flags. Although the flags
themselves are individual bits, they are arranged together in the form of a
16-bit register so that their contents may be easily saved and restored
whenever necessary (e.g. while a subroutine is being executed).

992.2 Computer architecture

When the status of flags is reported in diagnostic programs, a
special notation is used.

Flag Set Reset
CF Carry CY NC
PF Parity PE PO
AF Auxiliary AC NA
ZF Zero ZR NZ
SF Sign NG PL
IF Interrupt EI DI
DF Direction DN UP
OF Overflow OV NV

After executing an
instruction, flags are either
set (logic 1) or reset (logic
0). Instructions with the
CPU’s instruction set use
these flags to jump to
another section of the
current program.

The stack is a block of memory used for temporary storage. Saving data to
the stack is called pushing and retrieving the data is called popping. Data
pushed onto the stack can be popped off the stack on a last-in, first-out
(LIFO) basis. The offset which represents the top of the stack is held in a
register − called a stack pointer. The base address is the contents of the
stack segment register. Thus, the segmented address of the top of the stack
is given by SS:SP. The stack fills from high memory to low. The bottom of
the stack is thus: SS:FFFF.

In the example here, the data at offset
address 5FFE is the top of the stack.
The segment base address for this
offset is the contents of the stack
segment register.

6000 A8
5FFF 34
5FFE FE

Top of stack

When a subroutine is called within a program, the contents of CS and IP are
pushed onto the stack. After the subroutine has finished, CS:IP are popped
off the stack and thus execution of the main program resumes at the
statement following the call to the subroutine. The subroutine itself can also
save the contents of other registers by pushing them onto the stack and then
popping them back before handing control back to the main program.
When data is pushed or popped from the stack, the stack pointer (SP)
decrements or increments either by 2 or 4 depending on whether a word or a
double word is being pushed or popped.

Other instructions exist which allow a program to set or reset some of the
flags. The flag register as a whole is usually pushed onto the stack when a
subroutine executes and is then popped off the stack when the main
program resumes.

Newnes Interfacing Companion100

Conventional memory is called “random access memory” or RAM and is
able to be read from or written to. ROM is read only memory and can
only be read from. Data in ROM is burned in during manufacture of the
memory chip. In an 8086 based microcomputer, there are a number of
programs placed in ROM which allow the computer to do certain basic
operations. For example, ROM typically contains:

• Start-up routines.
• BIOS (basic input/output services).
• BIOS extensions for additional equipment

connected to the computer.

1. Start-up routines
When power is applied to the
microcomputer, the first program to
run is a power-on-self-test which does
a memory check, initialises all support
chips and the vector interrupt table,
and finally loads the operating system.

2. BIOS
BIOS standards for Basic
Input/Output Services and these
services are a set of programs which
allow application programs to
interface with input/output devices
connected to the computer in a
consistent manner. BIOS programs
are usually stored in ROM firmware.
The operating system calls upon ROM
BIOS routines using interrupts. The
ROM BIOS relieves the application
program of interfacing directly with
memory locations to manage
keyboard entry, video output, serial
and parallel communications etc.

In this book, we are
particularly interested in
serial port communications.
BIOS routines available for
the serial port are:

Service
0 initialise serial port

parameters
1 transmit character
2 receive character
3 get serial port status

For example, the serial port
parameters (baud rate,
parity, stop-bit, data bits)
are specified in a bit pattern
for a single byte which is
placed in the AL register.
When the service is called
(using an interrupt), the
initialisation information is
read from AL and the BIOS
programs the UART.

2.2.11 ROM

1012.2 Computer architecture

Servicing of I/O devices is usually done using interrupts. When an
interrupt signal is received, the CPU suspends its activities and runs an
interrupt service routine or interrupt handler. After the interrupt
service routine has finished executing, normal execution is resumed.

There are three types of interrupts:

1. Microprocessor interrupts
These interrupts are initiated by
various error conditions (such as
a division by zero or arithmetic
overflow). These interrupts are
also known as processor
exceptions.

2. Hardware interrupts
These interrupts are physically
wired into the microcomputer.
A special NMI interrupt has the
highest priority and cannot be
masked out by other interrupts.
It is processed during critical
hardware events such as a
power loss.

3. Software interrupts
These interrupts are initiated by
software to perform various
operations such as writing to a
disk file, reading from the serial
port etc. These built-in interrupt
handling routines are a part of the
computer’s BIOS − Basic
Input/Output Services.

2.2.12 Interrupts

Interrupts are handled on a
priority basis. The interrupt
number determines its priority.
High level interrupts cannot
themselves be executed if a lower
level or high priority interrupt is
being processed.

The management of hardware
interrupts is handled by a
programmable interrupt
controller chip: the 8259. This
chip can be programmed to
implement a variety of priority
schemes and to accept level or
edge-triggered interrupt signals. It
determines which interrupt
requires servicing and signals the
CPU via the INTR line that an
interrupt is pending. When an
acknowledgement is received from
the CPU, the 8259 places the
interrupt number on the data bus
and the CPU determines the
address of the appropriate interrupt
handler and the required interrupt
service routine is then executed.

The 8259 controller can handle eight hardware devices. 8086-based
microcomputers have one 8259 controller. 80286+ computers have two, with
the second controller cascaded to interrupt channel 2 of the first giving
access to 15 hardware devices.

Newnes Interfacing Companion102

An interrupt vector table contains the address pointer for the interrupt
service routines associated with each of the 256 available interrupts. The
interrupt vector table is usually located in low memory. Interrupt vectors 0
to 31 are usually reserved for microprocessor interrupts. The remainder can
be used for hardware or software interrupts.
The interrupt type number
determines its place within the
interrupt vector table and its
priority (with the exception of the
NMI interrupt (2), but has the
highest priority due to its direct
connection with the CPU).

Microprocessor interrupts are
divided into fault, trap or abort
conditions. For fault conditions,
the instruction that caused the
fault is retried after the interrupt
service routine has been
executed. For trap conditions, the
next instruction in the program
being run by the CPU is executed
after execution of the interrupt
service routine. Abort conditions
stop the main program execution
entirely necessitating a restart of
the program.

The IF flag is used to control whether or not hardware interrupts can
be processed. When a hardware interrupt is recognised, the CPU clears
the IF flag automatically, but this can be reset by the interrupt service
routine if additional higher priority hardware interrupts are to be serviced
during processing of the interrupt service routine.

The non-maskable interrupt (NMI) is a special hardware interrupt that is
connected to the NMI pin of the CPU. The NMI is assigned an interrupt number
of 2, although, since it cannot be masked by other interrupts, it effectively has
the highest priority and is designed to be recognised in the shortest possible
time. Conditions such as a power failure or memory read or write errors typically
trigger this interrupt.

Vector Interrupt
32–255 Available for software and

hardware interrupts
17–31 Reserved
16 Coprocessor error
14–15 Reserved
13 General protection fault
12 Stack fault
10–11 Reserved
9 Hardware keyboard
8 Hardware timer
7 Coprocessor not available
6 Invalid opcode
5 Print screen
4 Overflow
3 Breakpoint
2 NMI
1 Debug/single step
0 Divide error

1032.2 Computer architecture

Memory is addressed by reference to segments and offsets. However, as we
have seen, the actual value of the segment may be on any 16-bit boundary.
Memory itself is divided into blocks. There are 16 blocks each of size 64 k
(65 536 bytes). Block 0 is the first block and starts at address 00000 and
extends to 0FFFF. Block 1 starts at 10000 and goes to 1FFFF etc.

Fxxx:xxxx
Exxx:xxxx
Dxxx:xxxx
Cxxx:xxxx
Bxxx:xxxx
Axxx:xxxx
9xxx:xxxx
8xxx:xxxx
7xxx:xxxx
6xxx:xxxx
5xxx:xxxx
4xxx:xxxx
3xxx:xxxx
2xxx:xxxx
1xxx:xxxx
0xxx:xxxx

16 × 64k blocks = 1 MB RAM

Blocks 0 to 9 are user blocks
and are used to hold start-up
routines, user programs and
data. 10 blocks at 64k each
gives a total of 640k.

Blocks A to F are
reserved for
special purposes: -
video memory,
input/output
routines etc.

Most of the 640k is available for
user programs except for a small
section in low memory starting at
00000. This low memory area
contains interrupt vectors which are
used to service input/output
devices connected to the
computer.

00000

FFFFF

ROM BIOS

BIOS
CRT display

interrupt vectors

A good example of a
memory-mapped device is
the video display adaptor
card. It contains memory
chips (usually 128K is
installed on the actual card)
and is considered a part of
main memory-mapped into
blocks A and B.

2.2.13 Memory map

Newnes Interfacing Companion104

Multitasking under Windows
requires programs running on the
computer to be isolated from each
other and a protected mode of
operation is thus required. In
protected mode, a program cannot
write directly to memory. Instead,
any data to be written or read is
done to virtual memory space and
transferred to physical memory
using a process called virtual-to-
physical translation by the CPU.

80286 processors and above can operate in either real or protected mode.
When operating in real mode, the CPU can execute the base instruction set
of the 8086/8088 processors. In protected mode, the CPU makes use of
advanced features for memory management and multi-tasking under the
Windows operating system. In protected mode, 80386+ processors can act in
virtual 8086 mode allowing 8086 instructions to run in a “DOS” window.

2.2.14 Real and protected mode CPU operation

Bit 0 in the control register is the
protection enable (PE) bit which, in real
mode, toggles the CPU into protected
mode. At reset, PE is initially 0 and the
CPU in real mode. When Windows
starts, it toggles this bit to 1 to place
the processor into protected mode. The
activities in this book are designed for
real mode operation of the CPU. This
can be simulated in a DOS command
window or by starting the computer in
“command” mode.

When operating in protected mode, the CPU register structure is different
to that used in real mode. The most important additions are descriptor
tables which hold information about memory and interrupts for each task
being run. Details of each task or application being run on the
microprocessor are held in the task register.

Each task is assigned global
and local memory resources.
All tasks can access the
global address space, but a
task cannot access another
task’s local address space.

Each task is also assigned a
privilege level. The kernel is
responsible for low level
tasks such as memory
management, I/O and task
sequencing. The kernel has
the highest privilege level: 0.

Global
address
space

Task A local
address space

Task B local
address space

Task C local
address space

Task C virtual
memory spaceTask A virtual

memory space

Task B virtual
memory space

1052.2 Computer architecture

The significance of protected mode operation for interfacing is that when
multiple tasks or applications are being run by the CPU, it appears to the user
that they are operating simultaneously whereas task activity is actually time-
shared within the CPU. For time-critical interfacing applications, the user
must be aware of the limitations imposed by this time sharing and hierarchy
of privileges. Virtual device drivers (VxD) typically have a kernel level of
privilege that permits direct I/O and this, together with direct memory
access, are required for time-critical interface applications.

Tasks with a lower privilege level can use routines that have a higher
privilege level but cannot modify them. User applications programs are
assigned the lowest privilege level: 3.
The combination of local address
space and hierarchy of privilege
levels allows the instructions and
data for all the running tasks to be
isolated from each other. Data in
one task is thus protected from
errors arising in another task.
Unlike real mode operation, I/O operations from a user application do not
have the required privilege level and so must perform these functions in
conjunction with an I/O device driver which does. This ensures that I/O is
done without violating not only the address space of another running
application, but also that the I/O does not adversely affect the low level
task sequencing and memory management responsibilities of the CPU.

When a DOS program is run in a DOS
or command window within a
Windows environment, the CPU is
placed into virtual 8086 mode by
setting the VM flag in the extended
flag register. The DOS program is still
run as a protected mode task, and when
the CPU switches to this task, the VM
flag is set as part of the task switching
process. The DOS mode program is
assigned a privilege level of 3. The
memory addressing scheme of the task
simulates that of a real mode CPU
operation and can be configured as part
of the task properties.

Kernel

Drivers

Extensions

Applications

0 1 2 3

Newnes Interfacing Companion106

2.2.15 Review questions

2. List the four types of special internal registers that exist in the
8086 microprocessor.

3. Explain the difference between a port and an address.
4. Draw a diagram which outlines the main components of a

microcomputer system (e.g. the CPU, memory etc). Describe the
function of each main component and how each communicates
with the others. Indicate also what governs the amount of
memory addressable by a program.

5. What is the ROM BIOS?
6. Which bit in the flags register indicates whether or not a

subtraction operation produced a negative result.

1. Give brief answers to the following questions:

(a) How many memory locations (or memory cells) can be
addressed by a 8086 microprocessor and why?

(b) What is the largest (unsigned) hexadecimal number that can be
stored in one memory location and why?

(c) How many memory locations can be read in one read/write
cycle and why?

(d) What is a long word and how is it stored in memory?

1072.2 Computer architecture

3. Start the debug program by typing the command debug at the DOS
prompt. The debug prompt is a ‘-’ character and indicates debug is
ready for a command.

1. Start your computer into DOS mode, or open a DOS command window
from your Windows environment.

2. Enter the mem command from the DOS prompt and determine how
much RAM memory your computer is fitted with and how it has been
allocated. Fill in the table below with the values shown on your screen.

Memory Type Total Used Free
---------------- -------- -------- --------
Conventional
Upper
Reserved
Extended (XMS)
---------------- -------- -------- --------
Total memory

Total under 1 MB

Largest executable program size
Largest free upper memory block

AX= BX= CX= DX= SP= BP= SI= DI=
DS= ES= SS= CS= IP=

4. Enter the r command and display the contents of the registers. Fill in
the table with the values indicated on your screen (include the last line
of the debug output in this table).

2.2.16 Activities

5. What is the status of all the flags? Are they set or reset? Is there any
one flag that is set differently to the others? Why would this be?

6. The last line in the register listing displays machine code and assembly
language of the instruction pointed to by the CS:IP registers. Compare
the segmented address at the beginning of this line with the indicated
contents of the CS and IP registers. CS: ________ IP: __________

Newnes Interfacing Companion108

7. To list the contents of a single register, we enter r XX where XX is the
register name. Debug responds with the current contents of the register
and then allows us to change those contents. Display the contents of
the AX register and change it to 00FE.

8. To display the flags, we enter r f at the debug prompt. We can then
set any of the flags by entering in the appropriate flag code. Display
the flags and then change the parity flag to even.

Flag codes
Flag Set Reset
CF Carry CY NC
PF Parity PE PO
AF Auxiliary AC NA
ZF Zero ZR NZ
SF Sign NG PL
IF Interrupt EI DI
DF Direction DN UP
OF Overflow OV NV

AX accumulator
BX base
CX count
DX data

CS code segment
DS data segment
SS stack segment
ES extra segment

IP instruction pointer
SP stack pointer
BP base pointer
SI source index
DI destination index

9. The “memory dump” command is d. The syntax is:
 d [address]
If the segment base address is not specified, then the address is taken
to be the offset to the current contents of the DS register. Examine the
contents of the BIOS area of memory which is located at F000:0000.
Note that the d command displays 128 bytes starting at the address
you specify. The d command lists the memory contents in hex and
attempts to interpret any ASCII characters and if any are found to be
valid ASCII, the characters are displayed on the right-hand side of the
screen. Continue to display the contents of the BIOS area of memory
until you find the copyright message from the manufacturer of your
computer. Record the memory location at which the copyright
message appears. _______: _______

You can continue to press d without any parameters to display more memory
contents. Some very interesting messages can be found in the BIOS contents.

1092.2 Computer architecture

10. Debug permits the display, enter, fill, move, compare and search for
data in memory. The “enter” command e, allows us to change the
contents of memory. The syntax is: e [address] [data].
Enter the value FF into memory location DS:0000 by typing: e
DS:0000 FF. Verify that the contents of DS:0000 have changed by
entering e ds:0000 and then pressing <enter> key to terminate
enter mode.

11. The “fill” command fills a block of memory with all the same values.
The syntax is: f [start address] [end address] [data].
Initialise memory locations DS:0000 to 0100 with zeros. Note: the end
address parameter is specified with an offset only and is assumed to be
the same as that as the starting address. Verify the contents of these
memory locations with the d command.

12. The “move” command allows us to copy a block of memory from one
place to another in memory. The syntax is:
m [start address] [end address] [destination address].
Again, the segment base address is either implied (the DS register
contents) or specified within the start address. Move the contents of
DS:0000 to DS:0100 to DS:0200.

13. The “search” command allows us to scan a block of memory and
search for a specific byte The syntax is:
s [start address] [end address] [data].
The address for any matches is displayed. Search memory locations
F000:0000 to F000:FFFF for the characters “read failure”.

Character data may be entered in a debug command if it is delimited
by quote marks. When debug processes the command, the ASCII
value of the characters is substituted.

Display the contents of nearby memory locations with the d command.

14. In addition to loading and running machine language programs (which
we will investigate in the next laboratory session), debug also is a
handy hexadecimal calculator. The h command allows us to add and
subtract hex numbers. Both operations are performed by the same
command.
The syntax is: h [hex number 1] [hex number 2] and the sum and
difference of the two numbers is displayed (in hex).
(a) Calculate the sum of the hex numbers 00FF and AB10.
(b) Determine the negative of the number A3 (this will be displayed

in 2’s complement notation).

Newnes Interfacing Companion110

111

A microprocessor can only act upon instructions which are specified in its
instruction set. The instruction set consists of a series of hexadecimal
codes, or opcodes, which are recognisable to the instruction decoder within
the CPU. Each series of microprocessor has a unique instruction set,
although many instructions are so common that they are found with only
minor modifications in all microprocessors. In the 8086 CPU, instructions
are 1 to 6 bytes long.
Some common classes of operations for which instructions are usually
provided are:

• Data movement
• Integer and floating-point arithmetic
• Logical operations
• Shift and rotation of bits
• Bit manipulation
• Program control (branching)

2.3.1 Instruction set

A sequence of opcodes arranged to perform a particular task is called a
machine language program or just machine code. To execute a machine
language program, the machine code needs to be stored into the code
segment of memory. The first byte of the program is stored at the lowest
address and subsequent bytes stored at higher memory addresses in
sequence.
Machine code instructions can be from 1 to 6 bytes in length. As an
example, the following 3 bytes of code move the literal number 2000H into
the AX register:

The most significant 6 bits
of the first byte specify the
“opcode” of the instruction.
The next bit specifies
whether the register
operand (specified in the
second byte of the
instruction) is the source or
the destination, and the
third bit specifies whether
the operation will be on a
byte or a word.

The second byte
contains information
about the operands
for the instruction.
They are the mode,
register and
register/memory
fields of the
instruction.

Other bytes contain
information about
various addressing
modes which require
data and/or address
data to be used as
displacements to
calculate a final
“effective address” for
the instruction.

B8 00 20

0100 1000 0000 0000 0010 0000

Newnes Interfacing Companion112

The instruction decoder within the CPU can only interpret machine code
instructions which are defined in the instruction set. Machine code
programming is extremely laborious and for this reason programs are
usually written using assembly language. An assembly language program
is converted into machine code by an assembler program.

Assembly language instructions

Assembler

Object module

Linker

Run module

Machine code with all addresses
specified relative to a base
address. The object module is
thus relocatable. For large
programs, several such object
modules may be created.

Separate object modules are
combined into a single run module
in which cross-references between
modules are resolved.

Source code in ASCII text. Symbolic
labels are used in jumps so that
absolute addresses need not be
calculated by the programmer.

2.3.2 Assembly language

1F6D:0100 B8
1F6D:0101 00
1F6D:0102 20
1F6D:0103 8E
1F6D:0104 D8
1F6D:0105 BF
1F6D:0106 00
1F6D:0107 00
1F6D:0108 B9
1F6D:0109 FF
1F6D:010A 00
1F6D:010B BA
1F6D:010C 00
1F6D:010D 00
1F6D:010E 89
1F6D:010F 15
1F6D:0110 47
1F6D:0111 49
1F6D:0112 75
1F6D:0103 F7
1F6D:0114 90

Memory
location

Machine
language

The run module created by the linker is
relocatable. The base address to which all
other addresses are referenced is supplied
by the operating system when it is loaded
and run. The linker creates an executable
file (with an .exe extension). In some
circumstances, a smaller .com file may be
made using a relocating loader. The loader
provides the base address and then
resolves all relative addresses into absolute
addresses. The resulting program file is
also executable but is given a .com
extension. Com files are smaller and
execute faster than exe files since the
overhead in resolving addresses has been
eliminated.

1132.3 Assembly language

The microprocessor can only interpret machine code instructions specified
in its instruction set. While running a machine language program, the
program counter or instruction pointer register holds the offset of the
address of the next instruction to be executed. The segment base address is
held in the code segment (CS) register. The initial value of CS and IP is
determined by the operating system when the program is run by the user.
The following sequence then occurs.

1. CPU fetches the instruction at
the address given by the
program counter (PC register)
(and address +1 for instructions
which are 2 bytes long) and the
instruction pointer register is
incremented before the
instruction is executed.

2. The instruction is decoded by
the instruction decoder which
decides what action to take next.

3. Operand data is fetched from
memory as required.

4. The instruction is executed.
Typically, the arithmetic logic
unit (ALU) performs the
necessary anding and oring etc.
The result from the instruction
goes into a register or back to
RAM memory (which would
involve a write cycle). The
flags in the status register are
also set.

The fetch operation consists
of the address being put onto
the address bus; a read cycle
is requested on the control
bus. The hex data at locations
address (and address+1 for 2
byte instructions) is brought
over to the CPU on the data
bus to the instruction decoder.

Some instructions require further
data to be read from memory (the
operands) while others are stand-
alone instructions may be acted
upon immediately. The instruction
decoder determines the set of
control signals required for that
instruction.

The address of the next
instruction to be executed is in
the IP register (from step 1) and
the program cycle starts again. If
the program contains some
branching instructions, then the
address to which to branch to is
placed in the IP during the
execute step ready for the next
fetch cycle.

FETCH–EXECUTE cycle

2.3.3 Program execution

Newnes Interfacing Companion114

An assembly language program contains statements which may be either
assembly language instructions (from the instruction set) or assembler
directives (which are instructions for the assembler program to follow
when the program is assembled into machine language).

CODESEG SEGMENT
 ASSUME CS:CODESEG
 PUSH BP
 PUSH DS
 MOV BP,SP
 MOV DS,ES:[SI]
 .
 More instructions….
 .
 POP DS
 POP BP
 RET 08H
CODESEG ENDS

Assembly language programs use the code segment of memory to hold
instructions, the data and extra segment for data, and the stack segment
for stack data. To facilitate programming, an assembly language program
is also divided into segments.

The assembler directive
SEGMENT and ENDS define the
beginning and end of a program
segment. For example, the data
segment of a program would
look like:

DATASEG SEGMENT
… Data definition directives
DATASEG ENDS

Following the data segment,
the code segment which
contains the actual CPU
instructions.

Note that each
segment of a
program begins
with a directive
SEGMENT and
ends with a
directive ENDS.

In these examples, DATASEG and
CODESEG are names that we give to each
segment.

These program statements are
written in a text editor and saved
as a source file. An assembly
language program finishes with
the END directive which tells the
assembler to stop assembling
when it reaches this line in the file.

2.3.4 Assembly language program structure

Label: <tab> mnemonic <tab> operands <tab>;Comment

Comments
may be added
at the end of
each line
(preceded by a
tab and “;”).

Assembly language
mnemonic. The
manufacturer issues
tables or books which
list all available
mnemonics (the
instruction set) and
their function.

Labels are
optional and
are useful
when looping
back to repeat
a section of a
program.

Operands or parameters
or data which will be
acted upon by the
assembly language
instruction. For 8088
instructions requiring two
operands, the first is the
destination and the
second is the source.

SYNTAX

1152.3 Assembly language

Name <tab> directive <tab> operands <tab>;Comment

There are various groups of assembler directives:
1. Symbol definition directives allow names to be assigned to constants,

addresses, operands etc. There are two definition directives:

2. Data definition directives define memory space for variables.

3. External reference directives

4. Segment and procedure directives divide the program into segments
and/or subroutines. The directives SEGMENT and ENDS mark the
beginning and end of a program segment.

name EQU expression
name = numeric expression

name DB expression
name DW expression
name DD expression

Allocates 1 byte

Allocates 2 bytes (word)

Allocates 4 bytes (long word)

PUBLIC expression
EXTRN name:type
INCLUDE file name

Allows variables and routines which
exist in other programs to be used in
the current program.

Segment_name SEGMENT PARA PUBLIC “class”

The name
given to the
segment.

Specifies that
the segment is
aligned on a
16-byte
address
boundary.

Specifies that all
segments with the
same name are to be
combined into one.

Specifies the class of
segment. Class can be
either one of the four types
of program segments: data,
code, stack, or extra.

2.3.5 Assembler directives

Newnes Interfacing Companion116

ASSUME DS:name, CS:name, ES:name, SS:name

PROC and ENDP define a portion of code which is used as a subroutine.
The last instruction (before ENDP) must be RET. A procedure may be
NEAR or FAR. NEAR procedures are defined and called within a single
code segment (the CPU needs only to push the return address IP onto the
stack while the subroutine executes). For a FAR procedure, both CS and IP
are pushed onto the stack.

The program segments can be written in the source file in any order. The
code segment is perhaps the most important since it contains the actual
assembly language statements that are to be executed. An ASSUME
directive is usually included in the code segment and is used to assign the
segment registers to the base addresses of the program segments.

CODESEG SEGMENT 'CODE'
 ASSUME CS:CODESEG,DS:DATASEG
 CODESEG ENDS
END

Example:

CODESEG SEGMENT “CODE”
ASSUME CS:CODESEG,DS:DATASEG
PUBLIC PROCNAME

For procedures that are called from other modules, its name must be
declared “public” using the PUBLIC assembler directive.

PROCNAME PROC FAR
..
..
RET 08H
PROCNAME ENDP

In this example, “CODESEG” is the name given to the code segment. The
ASSUME statement specifies that the CS register holds the segment base
address for the “CODESEG” segment. The “CODE” class in the SEGMENT
statement also identifies the “CODESEG” segment as a code segment.

2.3.6 Code segment

1172.3 Assembly language

CODE SEGMENT “CODE”
 ASSUME CS:CODE
MYPROG PROC FAR

PUSH DS
PUSH AX

 .
.
. More statements
.
RET

MYPROG ENDP
CODE ENDS
 END

Here is a useful summary of the statements required to produce a simple
assembly language program which when assembled and linked, can be run
from the DOS prompt.

The name of the program is “MYPROG”. The statements required to
produce a workable assembly language program depend on the operating
system and the method by which the program is to be run. If the assembly
language program is to be called as a subroutine inside a higher level
program, then the handling of parameters and restoration of the stack is
different to the case where the program is to be compiled into a stand-alone
executable (EXE) file.
The example shown here is suitable for a stand-alone program. The
program is assembled into an OBJ file which is then linked to form an
EXE file which can then be executed from the DOS prompt.
Particular care has to be taken with the RET instruction. RET without any
parameters appears sometimes to POP 4 bytes off the stack which is why in
this example, we have pushed DS and AX onto the stack at the start of the
program. If you do not include these statements (PUSH DS, PUSH AX)
your program will hang up and not return to the DOS prompt when
finished.
The END statement is also important if there is more than one procedure in
the program file. If there is more than one PROC and ENDP bracket, then
END must be followed by a label which indicates which procedure is to run
when then program is started.

This program shell is a
very simple application of
assembly language
which is suitable for a
very short programs not
requiring the passing of
command line
parameters. It is suitable
for the assembly
language interface to the
serial data acquisition
system to be described
later in this book.

2.3.7 Assembly language shell program

Newnes Interfacing Companion118

2.3.8 Branching

Unless otherwise instructed, the CPU will advance from one instruction to
the next in sequence. This linear sequence of execution can be varied by
branching. There are two types of branching.

Unconditional jump straight to the instruction located at the specified
address. The syntax is: JMP label

Branching involves an adjustment to the contents of the instruction pointer
(IP). To branch to a label, the CPU obtains a number whose value depends
on where label is located in the program relative to the current IP address.
This number (which may be positive or negative) is added to the contents
of the IP to give the offset of label. This offset is then placed into IP and
execution proceeds from CS:IP. If the jump or branch is to a place within
the same segment, then it is a NEAR jump. A branch to a different segment
is a FAR jump.

Bit positions in the flag register
indicate the results of the
instructions as they are executed.
Many instructions cause the flags
to be set. Some instructions do
not set any flags at all. Program
control statements test the flags
and allow branching to other
parts of a program outside the
main sequence of instructions.

The symbol cc is a condition code. If cc is
true, then the program branches to the
instruction prefixed label. If false, then
program execution continues with the next
instruction following Jcc.

Jcc flags tested
jo overflow flag is set OF=1
jno overflow flag clear OF=0
jz equals zero ZF=1
jnz not equals zero ZF=0
jnc carry flag clear CF=0
jc carry flag set CF=1
js sign flag set SF=1
jns no sign SF=0

The bit positions, or flags, in the
flag register are tested and
program execution is varied
according to the branch instruction.
The condition codes are set by the preceding instruction to the branch.
Most assembly language statements set the condition codes as part of the
execution procedure within the CPU. Precisely which codes are affected by
the execution of a statement depends on the command. The Jcc instruction
does not set the flags in the condition code register, it only tests those flags.
Thus, one may use several Jcc instructions in sequence, each testing the
result of a single previously executed instruction.

Conditional jump to an instruction at an address, the value of which
depends upon the result of a test. Jcc label

1192.3 Assembly language

In register addressing, an operand is
fetched from, or written to, a register.
For example:

MOV AX,DX

In this example, the 16-bit contents of
DX are copied into AX. The contents of
DX are not changed.

In immediate addressing, the actual
number specified in the program
statement is used as the source
operand. For example:

MOV CX,7FH

In this example, the hex number 7FH is
moved into register CX. However, CX is
16 bits wide, and 7F is an 8-bit number:
0111 1111. Since this number is positive
(it has a zero as the msb), the most
significant 8 bits of CX are filled with
zeros.

CX: 0000 0000 0111 1111
For a negative number, e.g. A3, the
msb of CX is filled with 1s.

CX: 1111 1111 1010 0011

Many assembly language instructions require data to be read or written to
memory locations and/or registers. The term addressing is used to
describe the method by which operands for the source and destination
instructions are specified.
Register and immediate addressing means that the operand is either a
register or specified as a constant within the assembly language
instruction itself.

2.3.9 Register and immediate addressing

This is one of the most common instructions in an assembly language program.
The general syntax of the instruction is:
MOV destination, source

Data is actually copied, not moved, from the source to the destination. The data in
the source is not changed. There are some restrictions on MOV:

• Data cannot be moved from one memory location to another by a single MOV
command.

• An immediate value cannot be moved into a segment register.
• Data from one segment register cannot be moved into another segment register.
• The CS register cannot be specified as the destination for a MOV instruction.

Some of these restrictions can be avoided by transferring data into a data register
(e.g. AX) and then to the desired destination.

Newnes Interfacing Companion120

The MOV instruction

If an operand is stored in memory, then the CPU must calculate the actual
physical address from which to read or write the data. The physical address
is formed from a segment base address and an offset. The offset is referred
to as an effective address. The segment base address can be the contents
of any of the segment registers. The effective address can be formulated in
a variety of ways. In general, the effective address is formed from:

EA = base + index + displacement

The actual physical address is thus:

CS
SS
DS
ES

:
BX
BP +

SI
DI +

8 bit displacement
16 bit displacement

Segment
base
address

Offset (effective address)

Various combinations of the elements may be used to form an
effective address. Not all the elements are required.

2.3.10 Memory addressing

In direct memory addressing, information about the address is given
in the instruction directly. An example is:

MOV AX,[0A40H]
This example says to move the contents of memory location with offset
0A40 into the AX register. There are several points about this example that
require attention. First, there is no segment base address specified in the
operand. If this is the case, then the contents of DS are assumed to be the
desired segment base address. Second, AX is 16 bits wide, and so a word
is moved from the offset and offset+1 with the msb of the AX register
receiving the data at offset+1.

DS:[direct address]The general format for direct memory addressing is:

Size codes
There are no explicit size codes used in 8086 assembly language instructions. The
size code is taken from the size of the operands. For example, in the MOV
instruction, moving data into or out from a segment register is always a word (2-
byte) operation. Moving data into or out from AL would be a byte operation since AL
is 8 bits wide.

1212.3 Assembly language

Segment base address
In these examples, the default segment base address for offsets (or effective
addresses) is the value in the DS register. However, this can be overridden by
specifying a segment register explicitly. For example:

MOV AX,ES:[0A40H]

2.3.11 Indirect memory addressing

In this example, the brackets indicate indirect addressing and BX contains
a 16 bit number which is used as a relative offset with DS to obtain the
absolute address (and address+1) which contains the 16-bit data to be
moved into CX. Note that the term “relative offset” here means that the
offset is considered to be relative to the contents of the DS register.

MOV CX,[BX]

As with direct addressing, in indirect addressing, the effective address
(i.e. offset) is combined with the contents of DS to form an actual
physical address. The effective address is determined from the contents
of either a base or index register.

DS : []
BX
BP
SI
DI

The general format is:

Based addressing is particularly useful for accessing data in tables or
lists. It involves a displacement which is added to the contents of the BX
or BP register to form an effective address.

MOV [BX] + 0A10H,AL In this example, the offset for the destination
operand is found by adding the number 0A10H to
the contents of BX. This is then used with the
contents of DS as the base segment address to
form the physical address from which to obtain the
operand data.

DS
SS

BX
BP

The general format is:

+ 8-bit displacement
16-bit displacement

If BP is used, then the default register for the segment base address is SS
rather than DS.

:[]

Newnes Interfacing Companion122

There are several forms of indexed addressing, all of which use a
displacement as a pointer to the start of an array of data in memory, and
an index register as an index to select a specified element in that array.

MOV AL,[SI]+1010H
The example here shows a direct indexing mode. The displacement
1010H is added to the contents of the stack index register to form an
effective address. The default segment base address is given by the
contents of the DS register. The advantage of this type of addressing is that
the stack index can be incremented or decremented to find the next or
previous element in an array of data that begins at DS:1010H.

A combination of based addressing and direct indexed addressing results
in a based index addressing mode. This is useful for accessing two-
dimensional (m × n) arrays. The displacement locates the array in memory.
The base register specified the m coordinate, and the index register
specifies the “n” coordinate of the element.

MOV AL,[BX] [SI]+1010H

The effective address is found from the contents of BX added to the
contents of SI and then added to the value of the direct displacement
1010H. The default segment base address is DS.

SI
DI + 8-bit displacement

16-bit displacementDS :[]

BX
BP + 8-bit displacement

16-bit displacement
DS :[][]BX

BP

2.3.12 Indexed memory addressing

1232.3 Assembly language

2.3.14 Interrupts

Software interrupts are used routinely in assembly language programs
to call upon BIOS services to perform basic I/O tasks. Within the CPU
processing operation, software interrupts are initiated using the INT
statement.

MOV AH,2CH ; SPECIFY DOS SERVICE NUMBER 2C
INT 21H ; CALL INTERRUPT TO EXECUTE SERVICE

INT interrupt number

When an interrupt instruction is processed, the following sequence occurs:
1. The flags register is pushed onto the stack
2. Interrupts are disabled to prevent the interrupt routine being

interrupted by a lower priority interrupt.
3. Contents of the CS and IP registers are pushed onto the stack
4. The address pointer for the interrupt service routine is retrieved

from the interrupt vector table and loaded into CS and IP registers.
5. The CPU begins executing instructions located at address CS:IP

The following example shows how to read the system clock
to obtain the current date and time.

Software interrupts are numbered 32 and beyond and are generally
assigned a higher priority than external hardware interrupts. Most
software interrupts are assigned by the operating system BIOS.

BIOS interrupts
Software interrupts generally offer a service. The service is called by a service
code placed in the AH register. Some common software interrupts are:

Interrupt Function
05h Print screen
10h Video service
11h Equipment list service
12h Memory size service
13h Disk drive service
14h Serial communications service
15h System services support
16h Keyboard support service
17h Parallel printer support services
18h ROM BASIC
19h DOS bootstrap routine
1Ah Real time clock service routines

Newnes Interfacing Companion124

1. What is the relationship between machine language op-codes,
mnemonics and the assembler. Also state why you cannot have an
assembler that will produce an executable program which will run on
more than one type of computer.

2. What is the sequence of events inside the CPU during the execution of
a machine language program statement?

3. Determine the physical address given by the following segment:offset
4000H:2H.

4. What is the general syntax of an 8086 assembly language statement?
5. Write a short assembly language program that will arrange two 8-bit

numbers in ascending order.
6. The AX register contains the value 1100H and BX contains 2B01H.

Write down the contents of the AX register after each of the following
assembly language statements executes:

7. The following program fragment places a character on the screen. If
the hex number A6 is placed in AL, explain what appears on the
screen. How would you have an assembly language program display
the actual hex number in AL on the screen?

AND AX,BX
OR AX,BX
XOR AX,BX

MOV AH,9H
INT 10H

2.3.15 Review questions

1252.3 Assembly language

The debug program can be used to create a machine language program
from our assembly language input. The command is the assemble or a
command.
1. Start the debug program and enter the a command together with a

starting address as shown: a CS:0100
Debug responds with the starting address for our program as CS:0100
and an input prompt _. Enter the short assembly language program
shown here and press the enter key at the last _ prompt to terminate the
assemble command.

Assembly language program
2. Verify the contents of the

assembly language program
using the unassemble u
command: u CS:0100

3. The program is now ready to be
executed. The go command
executes the entire program, while
the trace command executes a
specified number of lines and then
stop, whereupon the contents of
registers and memory locations can
be examined before proceeding.
Enter the trace t command:

t =CS:0100
Examine the contents of the
registers after each statement. Press
t to continue execution until the
last instruction is processed – do
not press t after the NOP step.

This program fills memory locations
2000:0000 to 2000:00FF with zeros.

1F6D:0100 MOV AX,2000
1F6D:0103 MOV DS,AX
1F6D:0105 MOV DI,0000
1F6D:0108 MOV CX,00FF
1F6D:010B MOV DX,0000
1F6D:010E MOV [DI],DX
1F6D:0110 INC DI
1F6D:0111 DEC CX
1F6D:0112 JNZ 010B
1F6D:0114 NOP

You enter these
commands.

Debug
responds with

address

2.3.16 Activities

(a) Examine the contents of memory locations 2000:0000 to 2000:00FF and
check their contents.

(b) Examine the contents of the AX, DX, DI, CX registers and explain their
values.

(c) Unassemble the program and determine the machine language code for
the first move statement.

(d) In the program, the JNZ statement was followed by a hex number 010B.
What is the significance of this number?

Questions:

Newnes Interfacing Companion126

4. The trace command is useful for executing the program one line at a
time. The go command executes the program without pausing.
However, we must be careful only to execute the instructions that we
have entered into the memory locations CS:0100 to CS:0114. The go
command allows us to execute a block of statements by specifying the
memory location at which to stop processing. Change the program
slightly by editing memory location 010B to:

g =CS:0100 0114

MOV DX,00FF
By using the a command to reassemble this line:

a CS:010B
Run the program using the go command:

Examine the contents of 2000:0000 to 2000:00FF and comment.

5. It is customary to use a text editor to write large assembly language
programs. The program is saved to a disk file and then translated into
machine code using an assembler. Using a text editor, create a text file
containing the assembly
language statements as
shown.

CODESEG SEGMENT ‘CODE”
 ASSUME CS:CODESEG
ZERO PROC FAR
 PUSH DS
 MOV AX,0H
 PUSH AX
 MOV AX,2000H
 MOV DS,AX
 MOV DI,0H
 MOV CX,00FFH
START: MOV DX,0H
 MOV [DI],DX
 INC DI
 DEC CX
 JNZ START
 RET
ZERO ENDP
CODESEG ENDS
 END

Note: “Zero” is a name
we assign to the
procedure. We only
need this name if we
link this program with a
series of others. Other
procedures can then
call this program by its
procedure name.

6. Save the file to disk with an .asm file name extension. For example:
LAB2.ASM

1272.3 Assembly language

7. Start the Microsoft Macro Assembler by typing in masm at the DOS
prompt. The assembler responds with prompts for the source file,
object file, source listing file, and cross-reference listing file. The
default names for the object file and the cross-reference file can be
selected by just pressing the enter key at the prompt. For this exercise,
do not accept the default NUL.LST (which produces no list file) but
enter the name: LAB2.LST.

8. If there are any syntax errors in the source file, they will be reported by
the assembler. If there are no errors, then proceed. Edit the source listing
file created by the assembler and note its contents. The source listing
shows both the source and corresponding machine code instructions.

9. The object file created by the assembler contains machine code but this
code is not yet in executable form. A separate program called a
“linker” is used to create the final executable program file. Start the
linker program by typing in link at the DOS prompt. The linker asks for
the object file names (of which there is just the one in our present
exercise) and the name of the final run file, a linker map file, and any
library files. Enter the name of the object file (e.g. LAB2.OBJ) and also
specify a map file with the same file name but with a MAP extension.
No library files are required so simply press enter at the LIB and DEF
prompts. (Ignore the linker warning about there being no stack
segment.)

10. The linker creates two files, an executable program file with an EXE
extension, and a map file which contains the start address, stop address
and program length for each program segment used by the program.
Examine the contents of the MAP file using a text editor and note the
stop address of the program.

11. The EXE file used by the linker is in executable form and can be
executed directly from the DOS prompt. However, we shall run the
program from within the DEBUG environment in this exercise.
Assuming that the executable file is called LAB2.EXE, start the debug
program with this file name as a command line parameter:

debug lab2.exe

Note the status of the registers (use the r command).

Newnes Interfacing Companion128

12. Verification that the program has been loaded correctly can be done by
using the unassemble command. The starting address is given by
CS:0000. Unassemble commands from this starting address to the stop
address given by the MAP file (see Step 10).
u CS:0000 stop address

Compare with the source listing (LAB2.ASM).

13. Now run the program using the go command. Use the memory dump
command d to verify that the program has performed its intended
purpose.

g =CS:0000
What message does debug display after executing the program?

Questions:
(a) Examine the LST file created by the assembler and compare the

machine language output with that produced by the unassemble
command of debug (see Step 2).

(b) When running this assembled and linked program from within debug
using the go command, we did not need to specify a stop address
as we did in Step 4. Why?

(c) In the source file (.ASM) we used a label as the target for the JNZ
command. Examine the unassembled program (from Step 12) and
verify that the assembler calculated the correct offset for this jump.

14. Write an assembly language program that will swap the contents of
locations 2000:0000 and 2000:00FF.

15. Write an assembly language program to perform an 8-bit subtraction.
The contents of 2000:0000 are to be taken away from the contents of
2000:0001 and the answer stored in 2000:0002. Compare your answer
to a pen and paper check using 2’s complement notation. Make sure
you include an example that gives a negative result.

1292.3 Assembly language

17. Write an assembly language program which will inspect the contents of
the AX register and either increment, decrement, or leave unchanged
the data located at address 2000:0000 depending on whether the data in
AX is positive, negative or zero (in 2’s complement notation).

18. Write an assembly language program which will fill the locations
2000:0000 to 2000:FFFF with zeros. (You can use a branch statement
to loop back until some condition is met – for example, load the number
0000 into a data register and increment that number each time you fill a
memory location until the number equals FFFF. Try using the J[cc]
commands to set this up).

19. Write an assembly language program that will swap the contents of
location 2000:0400 to 2000:04FF with the contents of 2000:0500 to
2000:05FF.

20. Write an assembly language program to scan the memory locations
2000:0000 to 2000:FFFF to see if one of them contains a byte equal to
a byte stored in the AL register. Put the address of that location in the
BX address register.

21. Write an assembly language program that will return the contents of a
memory location whose segment base address is specified in DS and
offset in SI. The contents are to be loaded into the lower half of AX.

22. Write an assembly language program that will return call DOS
service 21C via interrupt 21H. Examine the contents of CH, CL, DH
and DL and determine what information is being returned by this
service. (The DOS service number is to be placed into AH before
interrupt is called.)

16. Write an assembly language program which will add the two 16-bit
numbers below and store the result in locations 2000:0000, 2000:0001
and 2000:0002 (you’ll need a third memory location since the addition
of the two numbers shown below will overflow 16-bit positions).

1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0
1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0

Newnes Interfacing Companion130

131

The term interfacing is used to describe the connection between a
transducer or some other external device and the microcomputer.
Interfacing circuits may be required to deal with various levels of
incompatibility:

Mechanical or electronic devices requiring
connection to the microprocessor unit can be
anything from the output screen or monitor,
the keyboard, and external instruments. Two
main problems are usually encountered when
interfacing such devices:

2.4.1 Interfacing

A port is a connection from the outside
world to the microprocessor. The purpose
of an input port is to transfer information
from the outside world to the
microprocessor. An output port provides
information to the outside world from the
microprocessor. Each port has an address
and is thus connected to the address bus
and information to or from the port is
transmitted over the data bus. From the
microprocessor’s point of view, a port is
very similar to a location in memory.

Ports may be memory mapped, interfacing direct to the computer’s RAM,
or be assigned a separate port address. An interface adaptor connects the
data bus to the I/O device using compatible signals when the port is
accessed by the CPU for read/write operations.

• incompatible voltage levels
• changing current levels
• electrical isolation
• timing of data transfers
• digital to analog and analog to digital conversions

• Most devices do not operate at the same
speed as the microprocessor.

• There may be more than one device
which requires servicing at any one time.

Typical I/O ports on a
microcomputer

Newnes Interfacing Companion132

In an 8086-based microcomputer, I/O ports are identified using a 16-bit
port number or port address. Thus, there are a total of 65 536 possible
ports numbered 0 to 65 535 (FFFF). The CPU uses a signal on the control
bus to specify that the information on the address bus and data bus refers to
a port and not a regular memory location. The port with the specified
number then receives or transmits the data from its own internal memory.

2.4.2 Input/Output ports

Port number I/O device
0000 – 001F Direct memory access controller
0020 – 003F Programmable interrupt controller
0040 – 005F System timer
0060 – 0060 Standard 101/102-key keyboard
0061 – 0061 System speaker
0062 – 0063 System board extension for ACPI BIOS
0064 – 0064 Standard 101/102-key keyboard
0065 – 006F System board extension for ACPI BIOS
0070 – 007F System CMOS/real time clock
0080 – 009F Direct memory access controller
00A0 – 00BF Programmable interrupt controller
00C0 – 00DF Direct memory access controller
00E0 – 00EF System board extension for ACPI BIOS
00F0 – 00FF Numeric data processor
0170 – 0177 Intel(R) 82801BA Ultra ATA storage controller – 244B
0170 – 0177 Secondary IDE controller (dual fifo)
01F0 – 01F7 Intel(R) 82801BA Ultra ATA storage controller – 244B
01F0 – 01F7 Primary IDE controller (dual fifo)
02F8 – 02FF Communications port (COM2)
0376 – 0376 Intel(R) 82801BA Ultra ATA storage controller – 244B
0376 – 0376 Secondary IDE controller (dual fifo)
0378 – 037F ECP printer port (LPT1)
03B0 – 03BB Intel(r) 82815 graphics controller
03C0 – 03DF Intel(r) 82815 graphics controller
03F0 – 03F5 Standard floppy disk controller
03F6 – 03F6 Intel(R) 82801BA Ultra ATA storage controller – 244B
03F6 – 03F6 Primary IDE controller (dual fifo)
03F7 – 03F7 Standard floppy disk controller
03F8 – 03FF Communications port (COM1)
04D0 – 04D1 Programmable interrupt controller

Input ports generally require servicing (i.e. their data to be read) at
irregular intervals and further, their signals may only appear
momentarily. Techniques such as polling, interrupts and direct
memory access are used to service ports as required.

1332.4 Interfacing

2.4.3 Polling

The easiest method of determining when a device requires servicing is to
ask it. This is called polling. In this method, the CPU continually and
sequentially interrogates each device. If a device requires servicing, then
the request (or bus access) is granted. If the device does not require
servicing, then CPU interrogates the next device.

Polling is very CPU intensive
since the processor must spend a
large amount of time interrogating
devices which do not require
servicing. However, the procedure
may be easily implemented in
software making it flexible and
convenient. In some circumstances,
polling may be actually faster than
more direct methods of interfacing
(interrupts and DMA).

Interfacing in a multitasking environment
Interfacing in a multitasking operating system like Windows brings with it
many issues that may require special attention. The three main methods of
obtaining data from an interfaced device (polling, interrupts, and DMA)
cannot be guaranteed to occur at a particular time. This causes problems for
time-critical applications in which the time at which the data is recorded is
important, and also for applications requiring large amounts of data to be
rapidly collected.

Steps can be taken to minimise the problems. I/O devices such as general
purpose data acquisition cards make use of virtual device drivers employing
commands with low level privileges, hardware buffering, and bus-mastering
DMA can be used with some effect but cannot remove the limitations of the
overall system placed on it by the multitasking environment.
In some applications, where the cost and effort is appropriate, interfacing can
be done at the transducer and the data buffered and transferred to the
microcomputer at a time convenient to the microprocessor. In these systems,
the transducer contains a microprocessor of its own and is programmed using
an erasable programmable read only memory (EPROM). Commands can be
sent to the on-board microprocessor to run different internal programs using an
ordinary serial communications protocol.

Intelligent transducers contain all the power to obtain the necessary data from
the sensor under a variety of conditions, report error conditions and self-
calibrate under the control of a supervisory computer via an internet, radio or
direct cable connection.

Is there anyone there?

Is there anyone there?

Is there anyone there?

Newnes Interfacing Companion134

2.4.4 Interrupts

0 System timer
1 Standard 101/102-keyboard
2 Programmable interrupt controller
3 Communications port (COM2)
4 Communications port (COM1)
5 (free)
6 Standard floppy disk controller
7 ECP printer port (LPT1)

Typical IRQ allocations

Hardware interrupts are controlled by
the 8259 programmable interrupt
controller. I/O devices managed by
hardware interrupts are printers, keyboard,
and disk drives. The IRQ allocation is a
hardware device interrupt number
simply used to conveniently label the
devices making use of the 8259 controller.
The lower the IRQ, the higher the priority.

PCI-based systems are able to share IRQ assignments. When a shared interrupt is
activated, the operating system calls each of the assigned interrupt service routines
until one of the routines (configured by the device driver of the hardware) claims the
interrupt by conducting its own tests. For example, often registers are available
within each device that can identify whether the device has signalled an interrupt

8 System CMOS/real time clock
9 Intel(r) 82815 graphics controller
9 ACPI IRQ holder for PCI IRQ steering
9 SCI IRQ used by ACPI bus
10 SoundMAX integrated digital audio
10 Intel(R) 82801BA/BAM SM bus controller – 2443
10 ACPI IRQ holder for PCI IRQ steering
11 Intel(R) 82801BA/BAM USB universal host controller – 2444
11 3Com 3C920 integrated fast ethernet controller
11 ACPI IRQ holder for PCI IRQ steering
12 PS/2 compatible mouse port
13 Numeric data processor
14 Primary IDE controller (dual fifo)
14 Intel(R) 82801BA Ultra ATA storage controller – 244B
15 Intel(R) 82801BA Ultra ATA storage controller – 244B

Additional interrupts from
2nd 8259 controller

For interfacing applications, the time taken to register and process an
interrupt (interrupt latency) can lead to the need for the I/O device to
be heavily buffered. In addition, time critical interfacing applications
may not work as desired.

Come in! Knock
Knock

1352.4 Interfacing

2.4.5 Direct memory access (DMA)

In normal data transfer, data is transferred from one memory location to
another through registers in the CPU. The CPU has to hold the data
temporarily while it switches the control bus signal from a read to a write
since the data bus cannot be in a read state and a write state at the same
time. This temporary storage of data and resulting transfers into and out of
the CPU is time consuming and wasteful for interfacing applications that
require rapid accumulation of data and precise timing.

In direct memory access or DMA, data can
be transferred directly between memory and
the I/O port since I/O memory locations are
independent of RAM memory. DMA
requires full control of the address, data and
control buses. When a DMA transfer is to
occur, a DMA controller 8237 IC requests
control of the bus from the CPU. The CPU
promptly grants control and suspends any
bus-related activity of its own. The DMA
controller then transfers data from port to memory, or memory to port
directly, without any stack or register overhead operations that would
normally be required by the CPU to accomplish the same task. The DMA
acts as a third party to the data transfer. The latency time associated
with DMA transfer is only a few CPU cycles.

With a PCI bus, DMA management can be performed not only with the
DMA controller, but also by the device requiring DMA access. In such
systems, the device that gains control of the bus is called the bus master.
For interfacing applications, the combination of bus-mastering DMA and
a high speed PCI bus ensures that data transfer occurs as fast as possible
from the I/O device to memory. Further, bus-mastering DMA does not
require the allocation and usage of DMA channels since the DMA
controller is not involved. Bus-mastering DMA is referred to as first party
DMA since the I/O device itself is handling all the data transfer.

The 8237 DMA controller has a number of independent channels, each of
which is assigned to a particular device. Channel 2 is usually assigned to
the floppy disk controller. DMA can take place as a single byte or word, a
block of bytes, or on demand up to a set number of bytes. DMA transfers
can be initiated by a hardware request (via DREQ input on the 8237) or a
software request using a request register.

Go right ahead

Excuse me

Newnes Interfacing Companion136

Most microcomputers are fitted with one and often two serial ports. These
serial ports are labelled COM1 and COM2. The numbers 1 and 2 are for
our “external” convenience only. The actual “internal” port numbers or
addresses are 3F8 for COM1 and 2F8 for COM2.
The COM ports can usually be found on the back panel of a microcomputer
and may take the form of either 25 or 9 pin connectors. These pins are
connected to buffers which convert the pin voltages used for data
transmission over external cables (usually using the RS232 standard) to
TTL levels used for data transfer within the computer. The internal signals
are generated by a special communications IC called a UART.

25 pin

1

13

14

25

GND
TD
RD
RTS
CTS
DSR
GND
DCDDTR

RI

1

5

6

9

DCD
RD
TD
DTR
GND

DSR
RTS
CTS
RI

9 pin

Serial port pin connections for
RS232 communications

The serial port is most often used for
data communications. Hence, one of
the signal lines carries data either
being transmitted from, or received
by, the computer. The other signals
are used to control the flow of data
and to establish a communications
link between the two serial ports on
two different computers. Often, the
serial ports are connected by a
modem which converts digital data
into analog signals for transmission
over a telephone line.

The handling and control of
transmission is done by setting and
reading the binary data which
appears in the internal registers of the
UART. Each of these registers has an
address (i.e. the port address) in the
port address space of the computer.

2.4.6 Serial port

The 9 pin connector was introduced
to save space when the parallel and
serial ports were placed on a single
interface card.

1372.4 Interfacing

Purpose COM1 COM2
Tx,Rx data 3F8 2F8
Interrupt enable 3F9 2F9
Interrupt ident 3FA 2FA
Line control 3FB 2FB
Modem control 3FC 2FC
Line status 3FD 2FD
Modem status 3FE 2FE

The port addresses for IBM compatible microcomputers have been
standardised for many years.

It is customary to refer to the
first address as the “base
address”.

Base address

Each port address is a
register that allows the serial
port to be initialised and
operated on by software
commands. That is, the serial
port controller ship, the 8250
UART, is programmable in
the sense that its operation
can be controlled by
software rather than hard-
wired circuitry.

When a serial port interface
card is added to a computer,
the base address must be
set, either by a jumper on the
card, or by software. This
allows the card to be
configured as COM1 or
COM2 (or even COM3 or
COM4) as desired.

In Windows, it is easy to obtain the base
address for the COM ports. In Control Panel,
select System, and then “Device Manager”.
Select COM ports and then properties.

2.4.7 Serial port addresses

Newnes Interfacing Companion138

LCR (Line Control Register)
7 0

Data
bits
00 5
01 6
10 7
11 8

Stop bits
0 1
1 2

Parity
000 none
001 odd
011 even
101 mark
111 space

Break
0 Off
1 On

Baud
generator
divisor latch
0 normal
operation
1 load divisor

MCR (Modem Control Register)
7 0

DTR
RTS
OUT 1
(unused)

OUT 2
0 deactivate interrupt
1 activate interrupt

Loopback
0 normal operation
1 loopback mode

LSR (Line Status Register)
7 0

Byte received
Overrun error

Parity error

Framing error
Break

Tx ready

Tx
register
empty

The MCR is not set by
the 8250 UART itself.
We must set bits in it to
control the UART
operation and/or the
modem control lines.

MSR (Modem Status Register)
7 0

CTS high
DSR high

RI high
CD high dCTS

dDSR
dRI
dCD

The d flags are set if
the state of the
control lines has
changed since they
were last read.

2.4.8 Serial port registers

1392.4 Interfacing

It is most common to operate the serial port (i.e. such as the 8250 UART)
through the use of interrupts. However, this need not always be the case.
The 8250 has four internal interrupt signals which can be connected through
to the CPU’s IRQ interrupt line via an INTR pin on the UART. The OUT2
bit in the Modem Control Register specifies whether or not to connect the
UART INTR output to the CPU’s IRQ line. In this way, the internal
interrupts generated by the UART can be optionally used by the CPU.

A 1 in the corresponding bit position
enables the internal interrupt. This
will not be registered at the CPU
IRQ line unless OUT2 in the MCR is
also set to 1.

IIR (Interrupt Identification Register)
7 0

1 no internal interrupts pending
0 internal interrupt pending

Interrupt identification
00 change in modem status
01 transmitter buffer empty
10 data received
11 line status error or break

Note: COM1 usually uses IRQ4
and COM2 IRQ3 on the CPU.

2.4.9 Serial port registers and interrupts

IER (Interrupt Enable Register)
7 0

Received data
Transmitter buffer empty

Line status error or break

Change in modem status

Newnes Interfacing Companion140

The baud rate is a measure of the number of bits per second that can be
transmitted or received by the UART. This rate is regulated by a clock
circuit which, for most UARTS, is on the chip itself and can be
programmed.

The UART clock must operate at 16 times the desired baud rate. The clock
is based around the operation of a crystal oscillator which, in the case of a
8250 UART, is set to a constant 1.8432 MHz. This clock signal is stepped
down through a series of counters to obtain the desired clock rate for the
chip to give the desired baud rate.

Thus,

B
115200D

D16
108432.1B

6

=

×

=

where D is called the baud
rate divisor and must be
loaded into the UART.

How is this divisor loaded?

1. Bit 7 of the LCR must be set to 1.
2. The LSB of D is written to the port base address (e.g. 3F8 for COM1).
3. The MSB of D is written to the port base address +1 (e.g. 3F9).
4. Bit 7 of LCR is cleared (and perhaps also set for other parameters such

as baud rate, stop bits etc).
5. Check port base address +1 for the desired interrupt settings.

Example:
A baud rate of 9600 is required.
What is the divisor D?

12
9600

200115D

=

=

2.4.10 Serial port baud rate

1412.4 Interfacing

Although it is possible to write and read from the serial port registers
directly, it is more convenient to use either applications’ program
languages or BIOS service routines. Most applications’ languages have
statements or functions available which facilitate the programming of the
serial port. For example, the

statement in BASIC allows the serial port to be configured without a
detailed knowledge of the actual port addresses. However, for interfacing
applications, direct manipulation of the registers is required. For example,
the BIOS service routines on an IBM compatible PC do not provide a way
to set RTS for hardware handshaking.

In Visual Basic, it is necessary to make use of the serial port object.

OPEN “COM1:9600,N,8,1” AS #1

These high level instructions ultimately result in a series of assembly
language instructions which call BIOS service routines through the
interrupt system.
The serial port initialisation
parameters are: baud rate, parity, stop
bits, data bits. They are combined into
an 8-bit number which is loaded into
AL prior to calling the interrupt.

The service to be called (0 for
initialise serial port) is placed into
AH. Parameters for the service are
placed in AL. The interrupt is
called, and the results placed in AL
(or AX for service 3), e.g.:

mov AH,0
int 14H

2.4.11 Serial port operation

.MSComm1.Settings = ”9600,E,7,1"

.MSComm1.InputLen = 0

.MSComm1.RTSEnable = True

.MSComm1.DTREnable = False

.MSComm1.PortOpen = True

MSComm1 has properties that can be set in code that allow the
serial port to which is is assigned to be configured.

Newnes Interfacing Companion142

The parallel port normally found on microcomputers is generally used for
printer output although there are some input lines which are used to report
printer status (such as paper out etc.). The Centronics printer interface
consists of 8 data lines, a data strobe, and acknowledge, three control and
four status lines.

The printer port is driven by the parallel port adaptor. In the adaptor, there
are three registers which are assigned I/O port addresses. The byte to be
printed is held in the data register which is at the port base address. The
printer status register contains the information sent to the computer by the
printer, and has an address of base+1. The printer control register has
address base+2 and contains the bit settings for computer control of printer
functions.

2.4.12 Parallel printer port

25 pin (computer side)
36 pin (printer side)

not shown

1

13

14

25

STB
D0
D1
D2
D3
D4
D5
D6
D7
ACK
BSY
PE
SEL

Parallel port pin
connections

GND

AUTOLF
ERR
INIT
SELIN

Data lines

Negative going
strobe signal
loads data onto
the data lines.

Negative going
acknowledge
signal sent to
computer by
printer when
data has been
latched.

Set high by
printer when
printer is not
ready to
receive data.

Set high by printer
when printer is out of
paper.

Set high by printer when
printer is “online”.

Set low by
computer to
enable
automatic line
feed when CR
character
transmitted.

Set low by
printer if there
is a fault
condition in
the printer.

Set low by
computer to
initialise the
printer.

Set low by
computer to
enable printing.

1432.4 Interfacing

The base address for the
parallel printer port can be
either of:
3BC
378
278

This address may
be LPT1 if there is
a monochrome
video adaptor fitted.

In Windows, the base address of the
parallel port is obtained through the
Device Manager in the Control Panel.
Select LPT1 and then Properties.

Printer port data register (base)
7 0

378

Printer port control register (base +2)
7 0

0 disable interrupt
1 enable interrupt

0 initialise printer
1 normal operation

0 normal
1 auto LF

0 STB high
1 STB low

0 deselect printer
1 select printer

37A

This address is
usually LPT1 on
most PCs. 278 would
then be LPT2 (if
fitted).

2.4.13 Parallel port registers

Printer port status register (base+1)
7 0

0 busy
1 not busy

ACK

0 paper in
1 paper out

0 offline
1 online

0 error
1 no error

379

Newnes Interfacing Companion144

Although it is possible to write directly to the parallel printer port
registers, it is customary to use the BIOS service routines available
through the computer’s operating system. Mostly this is done indirectly
through high level program statements like PRINT. However, it is possible
(and sometimes desirable) to call the BIOS routines directly from an
assembly language program.

BIOS routines are called through interrupt 17H. Three services are
available and are selected by the value placed in AH. For writing a byte to
the printer, the data to be printed is put into AL. The DX register is set to
indicate the LPT port to use (0 for LPT1:).

AH BIOS service
00 Write byte
01 Initialise printer
10 Report printer status

After the service has been
executed, the contents of the
printer status register are
reported in AL.

When the printer port is being used
through the BIOS service routines or
being accessed directly, the following
sequence is required to write the data:

• The data to be written is placed in
the Printer Port Data Register. That
is, the byte is written to the printer
port base address.

• The readiness of the printer to
accept data is confirmed by testing
the bits in the Printer Port Status
Register.

• The STB line is then pulsed low by
writing a 1 to bit 0 of the Printer
Port Control Register. This transfers
the data from the Printer Port Data
Register to the Data Lines on the
port connector.

Note: Although the parallel printer port is usually used for printing (i.e. output) there
is no rule against using the port for input and output for other peripherals. The more
recently introduced IEEE 1284 (1994) standard defines five modes of data transfer:
Compatibility Mode (standard mode); Nibble Mode (4 bits in parallel using status
lines for data); Byte Mode (8 bits in parallel using data lines); EPP (Enhanced
Parallel Port – used primarily for CD-ROM, tape, hard drive, network adapters, etc.)
and ECP Extended Capability Port – used primarily by new generations of printers
and scanners.

2.4.14 Parallel printer port operation

Centronics type
parallel connector

1452.4 Interfacing

2.4.15 Review questions

1. Arrange the following statements, which describe the sequence of
events when a CPU services an interrupt-driven device, in the
correct order.

2. Briefly describe the difference between programmed and interrupt-
driven I/O.

3. What are the three different types of interrupts in an 8086 CPU-based
computer?

4. How many channels are offered by an 8259 DMA controller? How can
further channels be accommodated?

5. What is the difference between bus-mastering DMA and DMA via
8259?

6. What should the contents of the Line Control Register be for a UART
to be configured for 7 data bits, 1 stop bit, and even parity?

7. What is the main difference between serial and parallel
communications? Give examples of advantages and disadvantages of
each method.

8. How is data usually communicated out through the parallel port?
9. For interfacing applications, what limits the maximum speed of data

acquisition in polling, interrupts, and DMA?

(a) The return address (i.e. contents of the program counter) is
placed on the stack.

(b) The CPU is directed to the interrupt service routine.
(c) The CPU returns to the main program.
(d) The interrupt service routine is executed.
(e) The CPU checks the interrupt mask.
(f) The return address is put back into the program counter PC.

Newnes Interfacing Companion146

147

2.5.1 Interfacing

Interfacing to a microcomputer is the process whereby the physical
phenomenon to be measured is converted into an analog electrical signal
by a transducer. The signal is then digitised by an analog to digital
converter (ADC) and then stored in memory.

Physical
phenomena:
Temperature
Voltage
Position
Velocity
Force...

Transducer
(sensor and
signal
conditioning)

I/O
 p

or
t

Interface
card

CPU

R
AM

Data bus

Address bus

Control
bus

ADC

Microcomputer

When a digital number is to be displayed on some
external device, it is converted into an analog
electrical signal by an interface adaptor containing
a digital to analog converter (DAC). The actuator
then converts the analog signal into a physical
quantity.

The ADC can be located either near the transducer,
or, as is more common, on a special purpose
interface card installed inside the microcomputer.
The interface card interfaces directly to memory
either by DMA or as a memory-mapped device.

Newnes Interfacing Companion148

An analog signal varies
continuously with time. A
good example is a sine
wave of frequency ω.

If we were to store this wave as a sequence of numerical data, we would
choose data pairs (y,t) at convenient intervals. The smaller the interval, the
more accurate the representation of the original signal when we come to
reconstruct it from the data.

ωt
0

y

π 2π

ωt
0

y

π 2π

0 0
π/4 0.797
π/2 1
3π/4 0.707
π 0
5π/4 −0.707
3π/2 −1
7π/4 −0.707
2π 0

Discrete
numerical data

Reconstruction

In this example, data was sampled at π/4 or 45o

intervals. If we decreased the sampling interval to π/8 (i.e. an
increase in the sampling rate), then we would obtain a more
accurate representation of the original analog curve.
What minimum sampling rate is required to reconstruct the signal? The
Nyquist criterion states that the sampling rate (samples per second)
should be greater than twice the highest frequency component (cycles per
second) of the signal.
If the signal was sampled at
intervals greater than π, then
the resultant wave, when
reconstructed, may still be a
sine wave but at a different
(lower) frequency. This is
called aliasing. The
reconstructed signal is an alias
for the original signal.

2.5.2 The Nyquist criterion

ωt
0

y

π 2π

1492.5 A to D and D to A conversions

Now, a very interesting problem arises when analog data is to be stored in
a digital system like a computer. The problem is that the data can only be
represented by the range of numbers allowed for by the analog to digital
converter. For example, for an 8-bit ADC, then the magnitude of the full
range of the original analog data would have to be distributed between the
binary numbers 00000000 to 11111111, or 0 to 255 in decimal. Numbers
that don’t fit exactly with an 8-bit integer have to be rounded up or down
to the nearest one and then stored.

The quantisation error ∆e is ± half a
bit (LSB) and describes the inherent
fundamental error associated with the
process of dividing a continuous
analog signal into a finite number of
bits.

If the ADC were able to accept
input voltages from 0 to 5 volts,
then full scale, or 5 volts, on the
input would correspond to the
number 255 on the output. The
resolution of the ADC would be:

V0196.0
255
5 =

2.5.3 Resolution and quantisation noise

Thus, for an input range of 0 to 5
volts, in this example, the
resolution of the ADC would be
19.6 mV per bit or 0.39%. A 12-
bit ADC would have a resolution
of 1.22 mV per bit (0.02%) since
it may divide the 5 volts into
4095 steps rather than 255.

Quantisation noise

N
ref

2
V

=∆

where Vref is the range of input
for the ADC in volts.

=∆
N

ref

22

V
e

The quantisation error is random, in
that rounding up or down of the signal
will occur with equal probability. This
randomness leads to the digital signal
containing quantisation noise, of a
fixed amplitude, and a uniform spread
of frequencies. The rms value in volts
of the quantisation noise signal is
given by:

12
erms

∆
=

resolution

The quantization noise level places
a limit on the signal to noise ratio
achievable with a particular ADC.

In general, the resolution of an
N bit ADC is:

Newnes Interfacing Companion150

2.5.4 Oversampling

In general, an input signal is comprised of a range of individual or
component frequencies. These signals can be separated by Fourier analysis.
The range of component frequencies able to be handled by a particular
analog to digital converter circuit is called the bandwidth.

Am
pl

itu
de

ω

Bandwidth

The Nyquist criterion requires us to sample
the input at a frequency of at least twice that
of the highest frequency component of the
input signal: fs >>2fo

fo 2fo fs

Input

Even if the Nyquist criterion is satisfied, then the existence of the
quantisation noise limits the ability of the system to represent the original
input signal exactly. This noise, the amplitude of which is independent of
the frequency of the signal, becomes a component part of the sampled data.
The power associated with this noise Pn is found by integrating erms over
the frequency range 0 to fo to give:

The ratio of the sampling frequency to the
Nyquist frequency is called the
oversampling ratio: .f2fOSR os=

()OSR1eP 2
rmsn =

The significance of this is that the signal-
to-noise ratio SNR can be improved by
increasing the OSR or increasing N.

n

s
P
P

SNR =

Signal
power

Noise
power

Increasing the number of bits increases the signal to noise ratio. However,
oversampling with an N-bit ADC also reduces the noise power and thus
causes the N-bit ADC perform as if it were an N+w bit ADC. If fs is the
original sampling frequency, then to obtain w extra bits of resolution, the
new (or oversampling) frequency is given by 4wfs.

76.1N02.6

e
1

22
V

log20SNR
rms

ref
10db

+=

=

122
V

e N
ref

rms =where

2
inV∝

Now, the noise voltage is expressed here
as an rms value, thus, we must also
express the input voltage as an rms value.
The maximum SNR is obtained when the
full range of the ADC is used. Allowing
for both positive and negative halves of
the input cycle, the maximum value of Vin
to the ADC is Vin = Vref/2, and thus, the
rms value of this is: .22Vref

The SNR is:

1512.5 A to D and D to A conversions

An analog to digital converter accepts an input voltage and issues a
positive integer on its output whose binary value is proportional to the
magnitude of the input voltage.

Digital signal
out represents
binary logic
levels

ADC

Analog
signal in

• Staircase (or integrating) method
• Successive approximation method

Digital data can be readily stored
and processed on a microcomputer.
Analog signals cannot.

Volts
0
5
5
0
0
5
5
5

V=Vmaxsinωt
0 1 1 0 0 1 1 1

2.5.5 Analog to digital converters

ωt0

y

π 2π

Typical conversion times:
8 bit 12 bit 16 bit

Integrating 20 msec 40 msec 250 msec
Successive
approximation 10 µsec 20 µsec 500 µsec

Analog signal

D
ig

ita
l o

ut
pu

t

Quantisation
error

Gain error

Differential
non-linearity
error

Linearity
error

Ideal
digital
output

Actual
digital
output

Offset error

• Linearity error typically
±1/2LSB

• Differential error typically
±1/2 LSB

• Gain error % adjustable by
external resistor

• Offset error: adjustable by
external resistor

Newnes Interfacing Companion152

The reference voltage is linearly increased in small steps until it equals or
exceeds the signal voltage and a digital counter is used to record the
number of voltage steps tested during the conversion time. The digital
count is thus an indication of the magnitude of the voltage input.

A to D conversions are usually performed by comparing the unknown
input signal voltage to an internal reference voltage. A voltage generator
supplies a reference voltage which is adjusted until it equals (to within
some predefined tolerance level) the input signal voltage.

The conversion time depends upon
the magnitude of the input voltage.
This type of ADC is suitable for
recording signals that do not change
rapidly with time. The digitised
output value represents the average
value (or integral) of the input signal
over the sampling period.

DC voltage comparator

Reference voltage
generator

Binary counter
(digital output)

Clock pulses

DC voltage input
(analog signal)

St
op

 c
ou

nt

2.5.6 ADC (integrating method)

In more sophisticated devices, a dual slope technique is used. After an
initial zeroing period, the analog input signal is integrated (added
together) for a fixed number of clock cycles. The integrator input is then
connected to an internal reference voltage that has a polarity opposite to
the analog input signal.
The number of clock cycles
for the integrator to “discharge”
to zero is proportional to the
magnitude of the original
analog signal voltage. The
accuracy of the ADC is thus
dependent on the accuracy of
the reference voltage.

V

t

Vin (large)

Vin (small)

1532.5 A to D and D to A conversions

1. Set all bits set to zero.
2. Set msb to 1.
3. If Vin > D/A, then Vin is above half of full scale of output, thus,

keep a 1 in msb. If not, then clear msb to zero.
4. Set next msb to 1 (i.e. could have 1100 0000 or 0100 0000).
5. If Vin > D/A, then Vin is above 7/8 of fsd, thus, keep 1, else clear

bit.
6. Set next msb to 1 (e.g. 0010 0000, 0110 0000, 1010 0000 or 1110

0000)
7. If Vin > D/A then Vin is above 6/8 of fsd, thus, keep 1, else, clear

bit position.
and so on until Vin is tested against lsb.
The conversion time is fixed and is equal to:

f
N

Number of bits

Clock frequency

2.5.7 ADC (successive approximation)

In this method, the input voltage is compared to half the full scale voltage
and then lower values in succession. The steps are:

Vin

DAC

D
ig

ita
l o

ut
pu

tmsb

lsb

Shift register

Clock pulses

D/A

Comparator

This method allows high
speed data acquisition (up to
100 000 conversions/sec).
However, the opportunity
for errors to be introduced is
greater. The fixed
conversion time means that
the input signal needs to be
steady or at least captured
during the sampling period.

Newnes Interfacing Companion154

We have seen that the conversion of an analog signal to a digital output
takes time: the conversion time, which in the case of a successive
approximation ADC, is fixed. Now, if the analog input signal is changing
during the conversion time, then the converted output will be in error. This
is known as aperture error.
For example, for an 8-bit ADC, the smallest increment δ of input signal
registered by a single bit will be: δ = 1/28 = 0.0039 fraction of full scale of
signal.

During conversion time, the
signal changes. For there to be
no error in the digitised output,
this change must be less than
the smallest increment
registered by a single bit: i.e. the
product (δ)(Α).

()

()

f2
t

tAA
tt@AV

tAV

A
dt
V

tcosA
dt

dV
tsinAV

a

a

ain

in

max

in

in

in

π

δ
=

ω

δ
=

ω=δ

=∆δ=∆

∆ω=∆

ω=
∆

ωω=

ω=

Vin

t

aperture
time ta

δΑ

Consider a sine wave:

Maximum
rate of
change when
cos ωt = 1.

This would be the
maximum change in Vin
for a particular time
increment ∆t.

For there to be no error in
the output, ∆Vin < δA. The
maximum aperture time is
that at ∆ Vin= δ A.

Max aperture time for sine wave of
frequency f Hz. Conversion time has to be
less than this for no aperture error.

e.g. For 100 Hz input, 8-bit
ADC, ta = 6.2 µsec.

The aperture time is the maximum time
interval within which the conversion must
occur before the signal changes enough to
affect the digitised output.

2.5.8 Aperture error

1552.5 A to D and D to A conversions

The ADC08xx series of ICs are 8-bit analog to digital converters which
use the successive approximation technique.

There is an RC oscillator built into the
chip whose frequency is approximately
1/RC. For example:

Conversions are initiated by an
external start pulse at pin WR.
Conversions begin when WR goes
from low to high. WR must remain
high during conversion.

When conversion is completed, INTR
goes low indicating that the digital
data on the outputs is complete and
the device is ready for the next
conversion.

The chip takes the difference
between the two analog inputs as
its input signal. If −Vin is tied to
ground, then the other may be used
as a single-ended input. If no
external reference voltage is
applied at Vref/2, then the chip uses
an internal reference which
depends on the value of Vcc.

The conversion time is given by
the clock frequency. It takes
approximately 64 clock cycles to
perform one 8-bit conversion.
Thus, to obtain a sampling rate of
say 10 000 samples per second, the
clock frequency needs to be set to:

()()
kHz640

101064f 3

 =

×=

The conversion time is thus:

s100
10640

64T 3

µ=

×

=

64 clock cycles
for one
conversion,
640 × 103 clock
cycles per
second.

()pF147k10
1kHz680

 =

2.5.9 ADC08xx chip

R

C

AD
C

0804

10k

+5 V

OSC

Digital
output

DB0

DB7

Analog
signal in

CLK

DGND

+Vin

− Vin

AGND

CS

RD

WR

Vref/2

INTR

Newnes Interfacing Companion156

4

V+

Analog
input

To avoid aperture error, the conversion time and the desired performance
characteristics of the ADC circuit must be taken into consideration. For
example, given a conversion time of say 100 µsec, what is the maximum
frequency of sine wave that can be sampled by the 8-bit ADC0804 without
aperture error?

Hz2.6f
f2

0039.010100

f2
t

6

a

 =

π
=×

π

δ
=

−

For an 8-bit ADC, δ = 1/28 = 0.0039

Not very high! What to do?

We need a circuit that will take a sample of the input voltage at a particular
instant, and hold it until the ADC has processed the conversion - a sample-
and-hold circuit. There are a number of pre-packaged ICs available, a
common one being the LF198, 298, 398 series.

The time taken for the sample-and-hold circuit to sample the signal and hold
it must be shorter than the conversion time (otherwise we wouldn’t need to
use the circuit!). The above circuit has a conversion time of about 10 µsec.

When logic input is high,
output follows any changes
in the analog input. When
logic input goes low, the
analog input signal is
captured and passed through
to the output. Output remains
fixed at this value while logic
input is held low.

Ch is a hold capacitor
and should be a
polystyrene type
≈ 0.01 µF.

V−

Output

Ch

5

6

7
8

3

1

Logic input
hold

sample

0 V

5V

Q. How many bits per second
need to be transmitted for this
frequency of sine wave? N =
1/620 × 10-6 = 1611 bytes/sec
= 12 888 bits/sec

2.5.10 Sample-and-hold

1572.5 A to D and D to A conversions

+5V

Now, to control a sample-and-hold circuit, signals from the ADC
can be used.
WR: Standby mode when WR is
low. Conversions begin when
WR goes from low to high. WR
must remain high during
conversion.
INTR: Usually high. When
conversion is completed, INTR
goes low for eight clocks. WR
must then be held low for about
500 nsec before going high to
initiate a new conversion.
We can use a 7476 latch to control a
sample-and-hold circuit. The Q output from
the latch can be made low while conversion
is in progress thus sending the sample-and-
hold circuit to “hold”.

• Start pulse initiates conversion
since it is connected directly to
WR.

• Since SET is high, and initially
RESET is high, the output Q
will respond to the clock going
low and since J is high (with K
low), Q is sent low. Sample
will be latched on clock signal
going low. Conversion actually
begins when clock (WR) goes
back high.

• At the end of conversion, INTR
goes low which sends a low to
RESET sending Q high
independent of the signal at J
and sending sample and hold to
“sample”.

J K
0 0 no change, Qn+1 = Qn
0 1 Qn+1 = 0 (RESET)
1 0 Qn+1 = 1 (SET)
1 1 Qn+1 = Qn toggle

Clock pulse 1 to 0

R S Q Q
1 1 no change
1 0 1 0
0 1 0 1

Normal
operation

Action tables:

7476

2.5.11 Sample-and-hold control

Start
pulse

Q

S

R

J

K

To sample-and-
hold logic input

CLK

CLK1

Vcc

S1

R1

J1

CLK2

S2

R2

GND

K1

Q1

Q1

J2

Q2

Q2

K2
08

04

INTR

WR

+Vin

Newnes Interfacing Companion158

Analog
signal out

Binary or digital
signal in

DAC122, 134, 156, 169, 191,
210, 225, 255, 225, 210,
191, 169…

Digital to analog conversions can be performed using resistor networks and
the conversion to an analog signal is usually in the order of nanoseconds.
Since the digital information is a step approximation of the input signal, the
resulting output from a D to A converter reflects this step nature of the signal.

The sharp steps of this
waveform lead to high
frequency components
in the reconstructed
signal not present in
the original. A low
pass filter may be
used to round off
these corners thus
leading to a more
faithful reconstruction.

ωt

Original
signal Reconstructed

signal

2.5.12 Digital to analog conversion

Digital to analog conversions may be made using a ladder network of
resistors or a weighted input to a summing amplifier. The voltage on the
output depends upon the voltages applied to the inputs. These voltages may
be either 0 (for logic 0) or some supply voltage Vcc (for logic 1). The TTL
input connected to the lowest value resistor carries more weight than the
others, thus, a larger binary or digital input results in a larger analog output
voltage.

23

22

21

20

Analog
output

D
ig

ita
l i

np
ut

R

2R

4R

8R R/2

0

y

π 2π

-

+

1592.5 A to D and D to A conversions

A popular all-purpose 8-bit D to A converter IC is the DAC080x series.
The settling time is in the order of 100 ns.

VLC

Iout

V-

Iout

B1

B2

B3

B4

CMP

Vref−

Vref+

V+

B8

B7

B6

B5

D
AC

08
00

The output for this IC is in the form of two complementary currents Io
and Io. In the diagram above, these current outputs are connected to a V+
supply through two 10K resistors. A voltage output can be obtained by
measuring the voltage between the two output terminals or measuring the
voltage of one of the outputs with respect to ground. As the binary value of
the digital inputs increases, Io increases and Io decreases. A decrease in Io
means an decrease in the voltage drop across the 10k resistor and an
increase in Vo measured w.r.t. ground.

Vref provides a current
reference. Setting Vref to
V+ makes Vo swing
positive and negative.
Setting Vo to V+/2 gives
a 0 to V+ analog output.

2.5.13 DAC0800

Digital
inputsm

sb

ls
b

5 6 7 8 9 10 11 12

1
2

414

15
3 16 13

∆Vout

V+

Vref

V+V−

5k

5k

10k
10k

0.01 µF
0.1 µF

0.1 µF

Io

Io

Vo

Newnes Interfacing Companion160

2.5.14 Data acquisition board

In most circumstances, one would accomplish most interfacing tasks with
a general-purpose data acquisition board. Such boards fit into an ISA or
PCI slot in a microcomputer and would typically contain:

• Sixteen analog input channels (ADC)
• Forty digital I/O
• Four digital output channels (DAC)
• Four 16-bit counter input
• Two 16-bit timer outputs

Multiplexing is used on the input to a single ADC chip to allow multiple
and continuous scans of the analog inputs. Interface boards generally
allow the 16 analog inputs to be open-ended, or paired to form eight
differential inputs. The analog inputs may be fitted with simultaneous
sample-and-hold circuits to reduce the error associated with sequential
sampling of the inputs by the multiplexer.
Configuration and control of interface cards is done using applications
program interface (API) calls. These are functions provided by the card
manufacturer to perform tasks such as data acquisition, counter and timer
operation and selection of trigger method.
For multiple channel data acquisition, the scan rate (1/scan interval) is an
important parameter. Scan rates and other time critical functions are
referenced to an on-board clock or an external trigger signal.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Scan 0 Scan 1 Scan 2 Scan 3

Scan
interval

Sampling interval
(5 or 10 µsec)

Idle
state

Data transfer can be initiated by software polling, interrupts or DMA.
Interrupt latency, especially under a multitasking operating system, can
limit the maximum data transfer rate. Maximum data transfer rate is
usually obtained using bus-mastering DMA.

1612.5 A to D and D to A conversions

1. A 10-bit ADC accepts an input voltage from 0 to 5 V. Determine the
resolution of the ADC.

2. For an input signal of 500 Hz frequency, determine the aperture time of
an 8-bit successive approximation ADC.

3. Given a conversion time of say 50 µsec, what is the maximum
frequency of sine wave that can be sampled by an 8 bit ADC without
aperture error?

4. What is the purpose of a sample-and-hold circuit?
5. Calculate the settling time of a DAC that is required to convert 16 bit

signals from a compact disc player to produce sound in the audible
frequency range (say 20−20 000 Hz) whose signals were encoded
without aperture error.

6. The input signal below is presented to a sample-and-hold circuit.
Sketch the output signal which is in turn presented to the ADC when
the logic input signal goes from sample to hold as shown.

2.5.15 Review questions

Sample

Hold

Input

7. Design (in principle) a D to A converter that uses a network of
resistors without any active components.

Ans: 4.88 × 10−3 V

Ans: 1.24 × 10−6 s

Ans: 12.4 Hz

Ans: 1.2 × 10−10 s

Newnes Interfacing Companion162

163

Once an analog signal has been digitised by the ADC, the digital
information must then be passed to a port of a microcomputer for
subsequent placement on the data bus. An inexpensive, readily available
method is by serial communications using the serial port. Other common
methods are to use an ADC interface card that interfaces directly to the
computer bus system, and the GPIB parallel data bus.

Steps in serial transmission of a
byte of digital data:
(a) byte is converted into sequential

series of bits
(b) bit transmitted over signal wire
(c) bits reassembled into bytes

0 2π
ωt

y

π

2.6.1 Communications

The digital information coming from the
ADC is a series of bytes, generated one
after the other, as the input signal is
repeatedly sampled. In the serial method
of transmission, the bits that comprise
each byte are sent one at a time, in
sequence, along a single wire and then
reassembled into a byte after
transmission.

Serial interface card

Data bus

Serial port

Bit being
transmitted
on signal wire

Serial interface circuit

ADC

7 6 5

4

3 2 1 0

Newnes Interfacing Companion164

At the transmission end of the process, the byte of data is sent bitwise over
a signal wire. This is done using a shift register in a special integrated
circuit called a UART (Universal Asynchronous Receiver/Transmitter).

A shift register can be made using
cascaded JK flip-flops. A positive
transfer pulse loads the
asynchronous inputs R and S with
the data to be shifted. For example,
if D = 0, then on the transfer pulse,
S = 1, R = 0 and Q = 0. If D = 1,
then S = 0, R = 1 and Q = 1. Thus,
after the transfer pulse, the parallel
data is transferred to the J input of
each flip-flop. When the transfer
pulse goes low, R and S are both at
1 which is the no change state, and
on the clock or shift pulse, data is
transferred along the chain from Q
to J, the serial output bit stream
appearing as the last output Q.

At the receiving end, the serial bit
stream is converted to parallel 8-
bit data by a reverse of the above.
Data is clocked in, and then a
transfer pulse transfers the data to
the parallel outputs.

Now, for long distances, the bit
stream is not usually transmitted
directly over wires since the
binary signals are easily distorted
with distance. This, together with
the requirement that the
transmitter and receiver need to be
synchronised, means that
alternative arrangements are
required to actually transmit the
data over distances of more than
about 15 m.

D3

J QSx

K QR

J QS

D2

K QR

J QS

D1

K QR

J QS

D0

K QR

Shift
pulses

Transfer
pulse

4-bit shift register

1
1

0,1

1,0

0,1

0,1

Se
ria

l d
at

a
ou

t

1,0

0,1

1,0

1

1

0,1

1,0

2.6.2 Byte to serial conversion

1652.6 Data communications

The RS232 interface standard defines the necessary control signals and
data lines to enable information to be transmitted between computer
equipment (or data terminal equipment DTE) and the modem (or data
communication equipment DCE). The modulated carrier signal is
transmitted over a two-wire telephone network by the connecting modems.

A modem converts or “modulates”
digital information into a form suitable
for transmission over the telephone
network. The receiving modem
demodulates the signal back into
digital data for use by the receiving
computer. Modems transmit
information using a sine wave carrier
which is modulated (either through
amplitude, frequency or phase) to
carry binary information.

2.6.3 RS232 interface

1. RTS is raised high by the
sending computer indicating
that data is ready to be sent.

2. The transmitting modem sends
a carrier signal to the receiving
modem which raises DCD on
its connection to the receiving
computer which is thus notified
of the existence of a carrier
signal.

3. The transmitting modem waits
for a preset period for the
receiving computer to get
ready to receive data.

4. The transmitting modem raises
CTS signalling to the sending
computer that it may now
begin to send data.

5. The transmitting modem
receives digital data from the
sending computer on the TD
line and modulates the carrier
wave accordingly. The
receiving modem demodulates
the carrier and puts digital data
on the RD line connection to
the receiving computer.

6. When the sending computer
has finished sending the data,
it clears the RTS signal to the
transmitting modem which
then drops the carrier and
clears its CTS signal. The
receiving modem detects loss
of carrier signal and it drops its
DCD line to the receiving
computer.

DTE
(Computer)

DCE
(Modem)

RD
RTS
CTS
DTR
DSR
DCD
RI
GND

TD

Carrier signal + data

Receiving
modem Receiving

computer

Newnes Interfacing Companion166

Start and stop bits frame the data bits. When the signal line is not sending
data, it is idle and held at mark or logic high. The start bit is low or space
and thus when the receiver sees a transition from mark to space, it knows
that the next bit to be received is the lsb of the data being transmitted. After
all the data bits have been received, the receiver interprets the next bit to be
a stop bit which is mark. If the bit actually received is not mark, then the
receiver knows that an error has occurred.

The rate of transmission is the data
bit rate which is called the baud
rate. Generally, the baud rate is the
same as the bit rate; however,
some transmission systems are
capable of sending more than one
data bit (e.g. amplitude and phase
modulation) into a transmission bit
and the bit rate is thus higher than
the baud rate.

The receiver clock is usually made 16 times the bit rate. When a mark to
space transition is detected, the receiver counts 8 clocks. If the signal is still
at space, then it is assumed that the signal is a valid start bit. The receiver
counts off another 16 clocks and then samples the data until all the data bits
and stop bit(s) have been received. The bit sampling thus takes place in the
centre of the signal levels.
After the data bit and before the stop
bit, there may be a parity bit which is
used as a check for data validity. In
even parity, the total number of 1s
(including the parity bit) is made to be
an even number (and vice versa). The
receiver computes its own parity bit
when a byte is received and compares
it with that appended by the sender. A
mismatch indicates a parity error.

2.6.4 Synchronisation

Start
bit

8 data bits Stop
bit

Idle
state

Idle
state

8 clocks

Start bit
detected

16 clocks

1st data bit
sampled

Start bit
verified

16 clocks

0 1 0 0 1 0 1 1 0 1

1672.6 Data communications

The 6402 UART takes in parallel byte data into the Transmitter Buffer
Register at the inputs TBR1−8. This data is transferred into the Transmitter
Register for shifting. The output bit stream appears at Transmitter Register
Output (TRO). Similarly, serial data is read in at Receive Register Input,
converted to a character in the Receive Register and appears at Receive
Buffer Register outputs RBR1−8. The transmitter part of the circuit
automatically adds start, stop and parity bits according to logic levels
applied at control inputs. The receiver checks for parity and stop bit errors
and issues logic levels at various indicator outputs.

When TBRL goes low, data is read from the input pins TBR1−8 and
transferred to the Transmitter Buffer Register. When TBRL goes from low to
high, data is transferred from the Transmitter Buffer Register to the
Transmitter Register whereupon data is shifted and transmitted out on TRO.

If RRD is held low, then the data on RBR1−8 is that last read from the input
stream at RRI. A high level on DR indicates that the data read is available at
RBR1−8. Once read, DR needs to be reset by a negative pulse to DRR.

2.6.5 UART (6402)

Character length
 CLS1 CLS2
5 0 0
6 1 0
7 0 1
8 1 1

Parity PI EPE
None 1 x
Even 0 1
Odd 0 0

SBS, stop bits, 0 for
one, 1 for two

e.g. 8 data bits, 1
stop bit, no parity.

CLS1, CLS2 to 1
PI and EPE to 1
SBS to 0.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

VDD

not used
GND
RRD

RBR8
RBR7
RBR6
RBR5
RBR4
RBR3
RBR2
RBR1

PE
FE
OE

SFD
RRC
DRR

DR
RRI

6402

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

TRC
EPE
CLS1
CLS2
SBS
PI
CRL
TBR8
TBR7
TBR6
TBR5
TBR4
TBR3
TBR2
TBR1
TRO
TRE
TBRL
TBRE
MR

Pa
ra

lle
l d

at
a

in

Serial
data out

Serial
data in

Pa
ra

lle
l d

at
a

ou
t

Newnes Interfacing Companion168

RRD: Receiver Register Disable. A high level forces RBR1 to RBR8 to a high
impedance state.

RBR8–RBR1: Receiver Buffer Register outputs. Parallel byte data is output here.
PE: Parity Error: High level indicates that the received parity does not match

the parity set by the control bits. When the parity is inhibited (PI) this pin
is held low.

FE: Framing Error: High level indicates that the first stop bit is invalid.
OE: Overrun Error: High level indicates data received flag was not cleared

before the last character was transferred to the Receiver Buffer Register.
SFD: Status Flag Disable: High level input forces the outputs PE, FE, OE,

DR, TBRE to high impedance.
RRC: Receiver Register Clock. Set to 16 times the baud rate.
DRR: Data Received Reset. A low level clears the output DR to low.
DR: Data Received. A high level indicates character has been received and

transferred to the Receiver Buffer Registers.
RRI: Receiver Register Input. Serial data is clocked into the Receiver Buffer

Registers from here.
MR: Master Reset. High level clears PE, FE, OE and DR and sets TRE,

TBRE and TRO to high. MR should be pulsed high after power-up to
reset the UART.

TBRE: Transmitter Buffer Register Empty indicates that the Transmitter Buffer
Register has transferred its data to the Transmitter Register and is ready
to accept new data.

TBRL: Transmitter Buffer Register Load. A low level transfers data from the
inputs TBR1–8 to the Transmitter Buffer Register.

TRE: Transmitter Register Empty. A high level indicates that transmission of a
character, including stop bits, has been completed and that the
Transmitter Register is now empty.

TRO: Transmitter Register Output. Serial data output line.
TBR1–8: Transmitter Buffer Register inputs. Parallel data is loaded into the

Transmitter Buffer Registers at these inputs.
CRL: Control Register Load. High level loads the Control Register with parity,

character length and other settings.
TRC: Transmitter Register Clock. Set to 16 times the baud rate.

The more versatile 8250 (16450) UART extends the functionality of the basic 6402
by having programmable registers that set the baud rate, parity and stop bits, and
an interrupt controller. High level commands in an application program set the
appropriate bits in the internal registers (see Section 2.4.5). Later 16550 UARTS
feature first-in, first-out (FIFO) buffers which allow data transfer to happen at
maximum speed while the processor is momentarily occupied by other tasks.

A description of the pin functions on the 6402 UART is given below:

1692.6 Data communications

RRI and TRO on the 6402 UART are the serial input and output lines. The
polarity of the signals is +5 V for mark or high, and 0 V for space, or
low. However, the transmission of serial data along the wire in an RS232
transmission interface requires −15 to −12 V for mark, and +12 to +15 V
for space. Line drivers are used to convert the logic levels required by the
UART to those required at the RS232 interface pins TD and RD.
A very useful IC is the 232CPE dual RS232 transmitter/receiver. This IC
requires a single +5 V supply and generates +10 V and −10 V necessary to
drive the RS232 signal lines. (Note: Handshaking signals CTS, RTS, DSR
etc are also at +10 V, −10 V.)
The 232 takes either TTL or CMOS logic levels as inputs, and provides
±10 V at the RS232 outputs. It also receives RS232 inputs, and provides
equivalent TTL or CMOS levels as an output. There are two separate
channels available for both receiving and transmitting.

TTL out
RS232 in

TTL in

TTL in

TTL out

RS232 in

+5V

RS232 out

1µF

1µF

1µF

3.3k

RS232
out

Transmitting: TTL input, RS232 output
Receiving: RS232 input, TTL output
The external capacitors are used by the
internal voltage doublers to obtain ±10 V
RS232 signals.

+

2.6.7 Line drivers

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in

Vcc

GND

T1out

R1in

R1out

T1in

T2in

R2out

232

3.3k

+

+

+
1µF

Newnes Interfacing Companion170

The crystal’s piezoelectric
properties are electrically
equivalent to an inductance in
series with a capacitance at its
resonant
frequency.
The circuit
shown is a
CMOS inverter
implementation
of a Colpitts oscillator. The
input-output states of the
inverter oscillate at the
resonant frequency of the
crystal.

The 6402 has two separate clock inputs but normally, these are driven by
the same clock so that the transmit and receive baud rates are the same. The
clock frequency is to be 16 times the baud rate. The 6402 chip does not
have a programmable baud rate divider (as in the 8520) so the desired
clock frequency must be supplied externally using a binary counter.
A crystal oscillator
can be used in
conjunction with a
high speed inverter to
produce a square
wave output which
can be stepped down
to the desired
frequency with a
binary counter.

The second inverter
isolates the oscillator
circuit from that to be
driven by the clock.

GND

Vcc

74H
C

04

2.6.8 UART clock

153.6 kHz (9600 baud)

76.8 kHz (4800 baud)

38.4 kHz (2400 baud)

CP1

MR1

Q01

Q11

Q21

Q31

GND

Vcc

CP2

MR2

Q02

Q12

Q22

Q32

74H
C

393

CLK signal to
UART is to be 16
times the baud rate

19.2 kHz (1200 baud)

307.2 kHz
(19 200 baud)

4.9152 MHz

4.9152 MHz

10M

33 pF33 pF

74HC04

CLK

1712.6 Data communications

MR: Master Reset. High level clears PE, FE, OE and DR and sets TRE,
TBRE and TRO to high. MR should be pulsed high after power-up to reset
the UART. A simple delay circuit using a capacitor and a NAND gate can
be used to send a short positive pulse to MR on power-up. The time
constant is simply the product RC, and values of R1 = 100 kΩ and
C = 4.7 µF give a time constant of about 0.5 sec.

Initially, NAND output is at 0 V.
When Vcc is applied, the NAND
output goes to 1 since one input is
at +5 V and the other at 0 V. As
the capacitor charges up through
R1, voltage at upper input to the
NAND rises and after a time
characterised by R1C, the NAND
gate flips from 1 V to 0 V. The 1
kΩ resistor limits the current into
the NAND for protection.

to MR

+5 V

R1

1k

C

A suitable IC is the 7400
series NAND.

2.6.9 UART Master Reset

GND

Vcc

7400

Newnes Interfacing Companion172

The RS232 serial protocol was designed to transmit data over a
considerable distance using the telephone network but may also be used
for local communication to and from a device attached to the serial port of
a computer. The exact same control lines may be used to regulate the flow
of data between the connected equipment without the use of a modem;
however, there is a problem: if both devices are connected pin to pin and
attempt to send data over the transmit line, then no signals will appear on
the receive lines. Thus, the transmit and receive lines must be crossed over.
This type of connection is called a null modem.

RD
RTS
CTS
DTR
DSR
DCD
RI
GND

TD

DTE DTE

RD
RTS
CTS
DTR
DSR
DCD
RI
GND

TD

In the example above, the connections
between RTS and CTS, and DTR, DSR
and DCD, cause the computer to regard
the connection as occurring between
modems even if no modem is used at all.
For instance, the computer which is
sending data first raises its RTS line,
which is now directly connected to CTS.
The sending computer thus immediately
receives a CTS signal from its own RTS
and begins to transmit data on TD. The
receiving computer receives this data on
its RD line.

Tying DTR, DSR and DCD
together in effect tells the
computer that the modem is
connected to a telephone line
upon which there is a valid
carrier signal and data can be
either sent or received. Of
course, there is no modem
present at all, hence the term
null modem. TD, RD and signal
ground are the minimum
requirements for a serial
connection between two
computers, the other
connections may be required if
the communications software
on the computers tests the
modem status before sending
or transmitting data.

2.6.10 Null modem

1732.6 Data communications

BIOS services may be used to initialise and use the serial port. These
services are available through interrupt 20 (14H). Parameters for the
interrupt are specified in the AL register. The serial port is specified in
DX. The four services available are:

0 initialise serial port The serial port initialisation parameters are: baud
rate, parity, stop bits, data bits. They are combined
into an 8-bit number which is loaded into AL.

Bits baud
7 6 5 rate
0 0 0 110
0 0 1 150
0 1 0 300
0 1 1 600
1 0 0 1200
1 0 1 2400
1 1 0 4800
1 1 1 9600

Bits Parity
4 3
0 0 none
0 1 Odd
1 0 None
1 1 Odd

Bit No.
2 stop bits
0 one
1 two
Bit data
1 0 bits
0 0 unused
0 1 unused
1 0 7
1 1 8

The 8-bit data to be
transmitted is placed in
AL. After transmission,
a status code is placed
in AH.

The received character
is placed in AL. A code
is placed in AH to report
status.

The status returned by services 0−2 and that reported by service 3 are in the
form of a bit pattern in the AH and AX registers respectively. A 1 in any bit
position indicates the condition or error returned.

AH
7 Time out
6 Transfer shift register empty
5 Transfer holding register empty
4 Break-detect error
3 Framing error
2 Parity error
1 Overrun error
0 Data ready

AL
7 Receive signal detect
6 Ring indicator
5 Data set ready
4 Clear to send
3 Delta receive signal detect
2 Trailing edge ring detector
1 Delta data set ready
0 Delta clear to send

The service to be called is placed into AH. Parameters for the service are
placed in AL. The interrupt is called, and the results placed in AL (or AX for
service 3).
mov AH,0
int 14H

“Delta” bits indicate a change in the indicated flags since the last read.

2.6.11 Serial port BIOS services

1 send one character

2 receive one character

3 read serial port status

Newnes Interfacing Companion174

Serial communications can be easily implemented in BASIC. This
language provides statements which allow programming of the UART
without reference to the actual I/O port memory addresses. The serial port
initialisation parameters are set using the OPEN statement:

OPEN “COM1:9600,N,8,1” AS #1
which initialises COM1 at 9600 baud, no parity, 8 data bits, 1 stop bit.
Data is written to or read from a “file” numbered “1”.

To read 1 byte from COM1, we write: A$=INPUT$(1,#1)
The byte is read from the receive buffer in the UART and converted to an
ASCII character and then assigned to a string variable A$. To display the
decimal number actually read, we can use the ASC function:

PRINT ASC(A$)

The INPUT$ function is the preferred method of reading data from the serial
port. Other statements such as INPUT and LINE INPUT may work, but may
give unpredictable results if the data in the input stream contains ASCII
control characters such as LF and CR. If we were to use INPUT, then the
input would stop when the incoming data contained a comma or a CR
character. This is OK for reading in data from the keyboard, but not from a file
where we may wish to capture all the data.

2.6.12 Serial port operation in BASIC

frm_MainMenu.MSComm1.Output = WriteString + vbCr
ReadChar = frm_MainMenu.MSComm1.Input

frm_MainMenu.MSComm1.Settings = ”9600,E,7,1"
frm_MainMenu.MSComm1.InputLen = 0
frm_MainMenu.MSComm1.RTSEnable = True
frm_MainMenu.MSComm1.DTREnable = False
frm_MainMenu.MSComm1.PortOpen = True

In Visual Basic (VB), the procedure is very similar. The COMM port
object is placed on a form, in the example below, the form is called d
frm_MainMenu and the COMM port object is called MSComm1.

MSComm1 has properties that can be set in code that allow the serial port
to which is assigned to be configured.

Methods available to the serial port object allow characters to be read and
assigned to a variable, or the value of a variable to be written and
transmitted from the computer:

1752.6 Data communications

OUT &H2FC,&H8

Although at first sight reading the serial port using BASIC appears fairly
straightforward, difficulties arise when the data cannot be read fast enough
and the input buffer overflows. The buffer holds 255 characters (i.e.
1 character = 1 byte). Handshaking (either software codes or hardware
signals) is used to halt transmission of data from the sending computer until
the receiving computer has emptied the buffer. Various functions are
available in BASIC to allow either software or hardware handshaking.

• LOC(x) returns the
number of characters in
the input buffer for file
number “x”.

• LOF(x) returns the
number of character
spaces available in the
input buffer.

• EOF(x) returns (−1) if
the buffer is empty or 0
if it is full.

For the serial data acquisition circuit, hardware handshaking must be used
since there is no method of interpreting software codes such as XON and
XOFF. The RTS line offers the most convenient form of hardware
handshaking. RTS is arranged to go logic high (−10 V on RS232 signal
lines) when the buffer is full, and then low when the buffer is empty. Now,
the RTS signal line is available via the 2nd bit in the Modem Control
Register. Setting this bit to 0 will actually set RTS to logic high. The
BASIC OUT statement can be used to send a byte to an I/O port address.
Thus:

Set RTS logic high

OUT &H2FC,&HA Set RTS logic low

MCR (Modem Control Register)
7 0

DTR
RTS
OUT 1
(unused)

OUT 2
0 deactivate interrupt
1 activate interrupt

For COM2, the MCR port address is 2FC

These statements, in
combination with the LOC,
LOF and EOF functions,
can be used to control
RTS. The RTS signal in
turn can be wired to halt
and resume transmission of
data as required.

Note: The BASIC INPUT$ statement makes use of
interrupts to read the data from the serial port. Make
sure that OUT2 remains set at 1 when writing data to
the MCR.

2.6.13 Hardware handshaking

Newnes Interfacing Companion176

2.6.14 RS485

The maximum distance allowed by RS232 is about 15 m which in an
industrial environment can be a severe limitation, especially when the
computer is located say in a control room some distance away from the
transducer. Further, the maximum data transfer rate can be a limitation
for fast data acquisition. Standards such as RS422 and RS485 were
developed to overcome these limitations and permit greater flexibility and
performance for instrumentation applications.
An increase in transmission speed and maximum cable length is done by
using voltage differentials on signal lines A and B. For a space, or logic 0,
the voltage level on line A is greater than that on line B by 5 V. For a mark,
or logic 1, the voltage level on line B is greater than that on line A. The
receiver inputs on the line driver chip determine whether or not the signal
is mark or space by examining the voltage difference between lines A and
B. Two signal wires are thus required for data transmission.
Unlike RS232, in which there is usually a connection between two pieces
of equipment, the RS485 standard allows for up to 32 line drivers and 32
receivers on the one set of signal lines. This is achieved by tri-state logic
on the line driver pins.

In tri-state logic, pins can
be at logic 0, logic 1 or
high impedance. The last
state effectively
disconnects the driver
from the line. The high
impedance state is set by
an “enable” signal on the
driver chip.

Features of RS485:
• Maximum distance 1200 m.
• Data rate up to 10 Mbps.
• 32 line drivers and receivers

on the same line.
• TTL voltage levels.

1

5

6

9

Shield
TD (B+)
RD (B+)
RTS (B+)
CTS (B+)

TD (A−)
RD (A−)
RTS (A−)
CTS (A−)

Common RS485 9-pin connector

A(−)

B(+)

Input Output

Transmit Receive

1772.6 Data communications

2.6.15 GPIB

• Listener: A device set to be a listener can accept data over the bus from
another device. More than one listener at any one time is permitted. A
listener receives data when the controller signals it to read the bus.

• Talker: A device set to be a talker can send data to another device on
the bus. Only one talker can be specified at any one time. The talker
waits for a signal from the controller and then places its data on the bus.

• Controller: A controller can set other devices as listeners or talkers or
to take control. The presence of a controller is optional. For example, if
there is only one talker and all other connected instruments are listeners,
then no controller is required.

The General Purpose Interface Bus (GPIB) or IEEE 488 interface was
developed in 1965 by Hewlett Packard for connecting multiple scientific
measuring instruments together. Up to 15 devices may be attached to the
interface lines (or bus). One of the devices can be activated as the
‘controller’. Control can be passed to another device if required.

• 8 data lines
• 3 data control lines
• 5 management lines
• 8 ground lines

8-bit data can be transmitted in parallel, each bi-
directional line carrying 1 Mbit/second. A maximum
total cable length of 20 m with a maximum
separation of 4 m between devices is recommended.
Bus extenders and expanders can also be used.

The interface consists of:

Devices may be configured as listeners, talkers and controllers.

Each device responds to commands sent over the data bus. Each device can
recognise its address when it appears on the data bus. The device address is
usually set by dip switches or from software. The management of the bus is
done by the controller which typically contains a special purpose IC on a
GPIB interface card.

IFC
ATN
SRQ
REN
EOI

DAV
NRFD
NDAC

Handshake

Control

Data

7

0

Data is put onto the data bus by a talker when no device has pulled NRFD
(not ready for data) low (negative logic). DAV (data valid) indicates that
data is ready, and all devices then pull NDAC (no data accepted) low until
the data is read. The parallel connection of devices ensures that NDAC
goes high again when all listeners have accepted the data.

GPIB connector

Newnes Interfacing Companion178

2.6.16 USB

The range of peripheral devices now connected to personal computers are
attached by serial, parallel and PS/2 ports, and the requirement for ease of
use has resulted in the development of the Universal Serial Bus (USB).
USB is designed to be a low cost, expandable, high speed, serial interface
that offers “plug and play” functionality primarily for business and
consumer peripherals.
Data transfer rates for the first implementation of USB were up to 12
Mbps. USB 2.0 allows up to 480 Mbps making it suitable for real time
video and audio, high resolution digital cameras and data storage devices.

• USB interconnect
• USB devices
• USB host

controller

A USB system consists of:
The connection between USB devices and
the host, the data flow protocols, and the
manner in which devices are addressed.

USB devices are either hubs, which
provide attachments to other hubs or actual
devices. The host controller queries the
hubs to detect the attachment or removal of
devices. A unique bus address is assigned
by the host when a device is connected.

There is only one host in any
USB system. The host
controller sends a token
packet that describes the type
and direction of the data, the
device address, and the
endpoint number. The device
that is addressed then receives
a data packet and responds
with a handshake packet.
The USB transfers signal and
power over a four-wire cable.
Differential signalling occurs
over two of the wires. There
are three data rates:

• high speed at 480 Mbps
• full speed at 12 Mbps
• low speed at 1.5 Mbps

Host

Hub 1

Hub 2

Hub 3 Hub 4

Hub 5

Device

Device

Device

Device Device

DeviceHub 6

Device Device

Device

Device

1

2

3

4

5

6

7

Tier

A maximum of seven tiers is allowed. Tier
1 is the root hub and Tier 7 can only
contain devices.

1792.6 Data communications

In the USB system, one device must be the host and this places some
restrictions on its use in an industrial setting. A simple modem, for
example, can be wired using a null modem connection and be used with
a PLC or other RS232 supported transducer. With a USB system, a
computer must generally act as a host, even if communication is wanted
only from one device to another.

The ‘on the go’ (OTG) supplement to the USB 2.0 standard allows some
degree of peer to peer communication without the need for a fully
featured host.

In RS232 communications, the format of the data is not defined – it is
usually ASCII text but need not be so. The USB uses layers of transmission
protocols to transmit and receive data in a series of packets.
Each USB transmission consists of: • token packet

• optional data packet
• status packet

The USB host initiates all
transactions. The token packet
describes the type of communication
(read or write and the destination address). The data packet contains the
data to be communicated. The handshaking packet reports if the data was
received or transmitted successfully.

USB cable connections

1 Red 5 Volts

2 White D−

3 Green D+

4 Black Ground

Allows “bus-powered” devices to
be connected (no batteries or
mains power needed).

USB is designed to be ‘plug and play’. When a device is plugged into the
bus, the host detects its presence by signal levels on the data lines. It then
interrogates the new device for its device descriptor, assigns a bus address
to the device, and then automatically loads the required device driver.
When the device is unplugged, the host detects this and unloads the driver.
This process is called enumeration.

Firewire (IEEE 1394) is a serial interface standard originally developed by Apple
Computer (ISB was originally developed by Intel). Firewire allows up to 400 Mbps
and is a competitor to ISB (when first introduced, Firewire was several times faster
than the then USB standard). Like USB 2.0, the main consumer benefit is high
speed for video capture from digital cameras and camcorders without the need for
dedicated video capture interface cards.

Newnes Interfacing Companion180

2.6.17 TCP/IP

TCP stands for Transmission Control Protocol, and IP stands for Internet
Protocol. TCP/IP is a set of protocols that allows computers to
communicate over a wide range of different physical network connections.
TCP/IP provides protocols at two different layers of the OSI Reference
Model. In everyday terms, the world wide web (www) and email (SMTP)
make use of TCP/IP to communicate over the internet which in turn runs
on a variety of packet switching network systems the most popular of
which is the Ethernet. The actual connections between host computers is
done by satellite, coaxial cable, phone lines etc. For interfacing
applications, the internet is useful for communicating commands and
results from a remote sensor, but would be unsuitable for a direct interface
to the transducer due to the response time of the process.

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

TCP is concerned with sending and receiving
packets and assembling them into the correct
order. It is designed to be independent of the
actual network characteristics.

IP is concerned with delivering packets of data
through the internet. The IP isolates upper level
protocols from the specific characteristics. It does
not order packets in any way, but is simply
concerned with sending a packet of data to the
requested destination. IP addresses are assigned
to specific devices on the network to identify them
for the receipt and transmission of data.

Packet switching protocols. Data Link Control
(DLC), Ethernet. This layer is concerned with the
transmission of packets in a specific mode for
delivery over the mechanism of the physical layer.
Characteristics of the Ethernet determine the
response time of the network.

Wires, cables,
microwave links.

Telnet, FTP (File Transfer Protocol), SMTP (Simple Mail
Transfer Protocol), HTTP (Hyper Text Transfer Protocol),
etc. This layer defines the application that is used to
perform the type of communication required by the user.
IP addresses are decoded by a Domain Name Server
(DNS) at this level.

1812.6 Data communications

1. What basic digital logic circuit forms the basis of a UART used for
serial communications?

2. The RS232 serial interface is very popular because of its availability
and simplicity. Without actually describing the sequence of events,
describe the function of the six most commonly used signal lines.

3. What is a ‘null modem’ and under what circumstances should it be
used?

4. In a UART, why would the receiver clock be made to oscillate 16
times the rate of data transmission?

5. What is a parity bit?
6. Why is a 232 line driver IC required for communications between two

UARTs which take place over an external signal cable?
7. Why, in serial communications, is there a choice of 5, 6, 7 or 8 data

bits for the data being transmitted or received? (Hint: Investigate the
ASCII code for character transmission.)

8. What is the main advantage of the RS485 interface standard?
9. What advantage would a GPIB interface have over an RS232

communication in an interfacing application?

2.6.18 Review questions

Newnes Interfacing Companion182

183

Logic
instructions

2.7.1 Programmable logic controllers

Industrial processes have been traditionally controlled by electromechanical
systems (i.e. switches and relays). An electromechanical control system
controls the output states according to the input states. The logic behind the
switching and the resultant actions depend upon way the switches and relays
are wired together. The overall function in these systems is not so easily
changed and the systems are not easily maintained.

In the late 1960s, digital controllers were introduced to allow some degree
of programming to control the sequence of operations required in an
industrial process. A programmable logic controller (PLC) examines its
input states and turns off or on its outputs according to a pre-loaded
program that can be easily altered to suit changed circumstances. Advances
in technology have resulted in programmable controllers that can
communicate with each other, as well as receive and transmit control data
to remote locations. Present day systems feature functional block diagrams
and structured programming in a standardised way.

PLC devices have standard
input and output interfaces.
Standard input interfaces allow
direct connection to process
transducers. Standard output
interfaces allow direct
connection to relays or circuits
that energise process actuators.

PLC devices operate under program
control. A program consists of a series of
statements or logic instructions called a
list. The control unit scans the inputs and
performs logical operations according to
the loaded program and then switches the
outputs accordingly. The inputs are then
scanned again and the cycle repeats. The
result is an industrial process.

5 V TTL
24 V
110 V
240 V

24 V 100 mA
110 V 1 A
240 V 1 A
240 V 2 A

Inputs Outputs

PLC

Transducers
ActuatorsProcess

A PLC itself consists of the control unit (or CPU) as well as connections for
input and outputs, RAM memory (≈10 Kb) and a power supply. Inputs are
opto-coupled to the input circuits in the PLC to protect the PLC from noise.

Newnes Interfacing Companion184

A PLC program consists of a series of instructions that represent logical
operations performed on the inputs. The state of the outputs is set or
cleared in accordance with the logical result of the program instructions.

2.7.2 Timing

Scan inputs

Update outputs

Since it takes a finite time for the PLC to read the inputs (input response
time), process the instructions (execution time) and set the outputs
(output response time), changes to the inputs can only be registered if
they last longer than the scan time (input response time + execution time +
output response time). If the input changes more rapidly than this, then the
PLC may not detect the change and the required output may not be set.
This is called a phasing error.
When an input changes state, the resulting change in the output will take
place, in the worst case, two scan times (less one input response time)
later.

In some PLCs, the program is executed line by line. The control unit scans the
inputs actually referenced by each program statement as it is executed. The
output named in each program statement is then updated according to the logical
operation in the program statement and then held or latched in that state.

PLC scan times are usually
quoted in terms of the length of
time to execute a 1024-byte
program and depend upon the
clock rate of the controller.
Scan times are usually in the
order of 5 to 10 msec.

Execute
program

statements

The states of all the inputs are copied into RAM before the program
instructions are executed. Instructions are then processed in sequence. The
resulting output states are stored in RAM. When the program execution is
completed, the stored output states are transferred to the output terminals of
the PLC.

Scan 1 Scan 2

Input

Output

In
p

Ex
e

O
ut

In
p

Ex
e

O
ut

1852.7 Programmable logic controllers

The PLC inputs consist of input relays or contacts which may be
physically real devices or simulated as labelled contacts in the program.
The outputs are called coils representing the coil of a relay. The outputs
can take the form of transistor switches, triacs or relays. As well as inputs
and output devices, the control unit also typically contains latches,
counters, timers and registers for data storage. Some PLC devices also
have analog I/O capability.

2.7.3 Functional components

Latch When set to true, the output of the latch will stay on until
the latch is reset.

Counter Counts pulses at its input and sets the timer output to true
when a preset number of counts have been registered.
True at the reset input resets the accumulated count to
zero.

Timer Output of the timer turns on or is true a preset number of
seconds after the input is true. When the input is set to
false, the timer is reset and the output is set to false. While
the timer is counting down, the PLC continues to scan and
execute its instructions. Input and output errors can occur
with timers since the input to the timer may not be
registered until it is scanned. Further, the output device
may not be energised until the PLC has completed
executing the program.

Registers Used for storing data or the results of logical operations as
bits (true 1 or false 0). Registers are similar to internal
contacts. The contents of registers may be shifted left or
right. Data bits can be moved into and out of registers using
a MOV instruction.

A PLC can generally communicate with external devices using RS232
serial communications. The PLC may be fitted with an RS232 serial port
for this purpose. Data may be sent to or received from the PLC. The data
can be stored in the PLC data memory.

The actual logic program run by the PLC is usually entered through a
keypad or downloaded from a microcomputer. Before a program is
executed, various levels of verification are performed to ensure that the
program was transferred successfully into the CPU of the PLC. Various
systems are employed to protect processes and plant in the event of a power
loss. PLC systems are designed to be robust and operate unattended in an
industrial environment.

Newnes Interfacing Companion186

2.7.4 Programming

PLCs act upon list code instructions. To facilitate the creation of a list
code, ladder logic diagrams are used to simulate the existence and actions
of input and output devices. A ladder diagram consists of two vertical rails
inside which are placed symbols for contacts, relays, functions, and logical
operations on rungs. Logic flow (or current flow) is from left to right and
top to bottom on the diagram. An output on a rung is energised if there is a
continuous path of true logic leading back to the left (or positive) rail of the
ladder (logic continuity).

Contact

Coil End

X200 Y400

Addresses

Symbol Action
LD Evaluates to true if the physical contact it represents is

closed or on.

LDB Opposite to LD.

OUT Evaluates to true, and thus energises a normally open
coil, if there is a continuous “true” path from the left-
hand side of the ladder to it.

OUTB Opposite to OUT

List
code

Each rung must contain
one or more inputs and
one or more outputs. The
first object on a rung
must be an input and the
last object on a rung
should be an output, a
counter, timer or an
internal relay. The last
rung in a ladder diagram
is an END instruction.

The PLC scans the ladder diagram from top to bottom and left to right. In a
load instruction (LD) the physical state of a scanned input is determined
and the symbol in the ladder diagram evaluates to true if the physical
device is closed or on. The symbol may also be used for internal utility
relays or switches that do not physically exist.

Basic instructions

Positive
rail

Negative or
ground rail

Rungs

1872.7 Programmable logic controllers

2.7.5 Ladder logic diagrams

Ladder diagrams can become quite complex. PLC systems generally have
the ability to perform math functions on data, apply Boolean operators, and
store data in registers or memory locations.
Consider these simple examples:

X000 Y400X100

End

End

X000 Y400

X100

X000 Y400X100

End

End

X000 Y400

X100

Output Y400 is energised (true) as
long as inputs X000 AND X100
are both closed (true).

Output Y400 is energised (true) as
long as input X000 is closed OR
X100 is closed (true).

Output Y400 is energised (true) as
long as input X000 is closed AND
X100 is open (false).

Output Y400 is energised (true) as
long as input X000 is closed OR
X100 is open (false).

LD X000
OR X100
OUT Y400
END

LD X000
AND X100
OUT Y400
END

LD X000
ORI X100
OUT Y400
END

LD X000
ANI X100
OUT Y400
END

Ladder diagram List code

When X000 turns on (true) then
timer T300 begins counting down.
After 10 seconds, switch contacts
for the timer T300 are closed (true)
and output Y400 is energised
(true).

LD X000
OUT T300
K 10
LD T300
OUT Y400
END

X000 T300

T300

End

Y400

10

An output is only energised when
there is a continuous true path from
the left-hand side to the right-hand
side of the ladder.

Newnes Interfacing Companion188

The example below shows a timer circuit whose output device turns on and
remains on for the time period when an input pulse appears at the input.
This circuit uses an internal relay. Internal relays are coils and contacts
that are simulated by the PLC in memory. Like external relays, they consist
of an output coil and a set of contacts that can be used as the input to other
objects on a ladder rung.

In this example, when the input X000 is
true, there is logic continuity through the
normally closed timer contacts T300 to the
output Y400. This true state is fed back
into the input to the normally closed
contacts of the timer. Thus, when the input
X000 goes false, the output Y400 remains
on, it is latched by its own contacts.

X000

Y400

End

Y400

T300

10
X000

T300

Now, when X000 goes false, a true signal is sent to the timer to begin the
countdown period. During the countdown period, the output device Y400
remains energised by the latched path through the contacts Y400. When the
countdown period has expired, the normally closed contacts of T300
become open, thus interrupting the logic continuity to the output Y400 and
so Y400 is de-energised. The ladder logic above acts like a pulse extender.
A short pulse on the input X000 can be extended into a longer pulse
appearing at the contacts of the output Y400.
Ladder logic diagrams can easily become unwieldy and difficult to
maintain unless a certain methodology is followed to give them structure.

X000

Y400

End

Y400

Y400

Y400

Y400Y400

All inputs go
on the left
side.

All outputs
go on the
right side.

Things to do
when Y400 is
energised.

Internal relays,
timers and
counters.

Logic that determines
when the process is
completed and resets
the output.

1892.7 Programmable logic controllers

2.7.6 PLC specifications

There are numerous PLC systems available. The table below gives typical
specifications and features.

• 16 optically isolated AC inputs, 100 V−220 V, 50 Hz to 60 Hz.
• 8 optically isolated DC inputs, 5 V−24 V.
• 8 analog inputs, 0−5 V.
• 2 high speed optically isolated inputs up to 100 KHz.
• 8 AC optically isolated outputs, up to 220 V, 8 A.
• 8 DC optically isolated outputs, 48 V, 8 A.
• 32 timers, 16 on 0.01 second base, 16 on 1 second base.
• 32 up or down counters.
• 256 internal relays.
• Real time clock with time and date.
• RAM back-up.
• Data logging for 16k bytes.
• Programmable 4.5 digit LED display.
• Internal 110 V/220 V AC power supply.
• Ladder logic in EEPROM for 2 programs of 4k 32-bit words each.
• Scan rate 7 msec/k 32-bit instructions.
• Real time scan rate indicator.
• Network and I/O expandable via RS485.
• Heavy duty anodized aluminium alloy construction.
• EMI immunity and efficient heat dissipation.
• Standard DIN 43700 instrument case size.

PLC control panel for chilled water supply

Newnes Interfacing Companion190

2.7.7 Review questions

1. The scanning operation that is the feature of a PLC can be
considered to be similar to the multitasking mode of operation of
an event-based applications language like Visual Basic. Would
you agree?

2. Design a ladder logic diagram that switches on a refrigerator
compressor motor when the temperature rises above a preset limit
and switches it off when the temperature falls below another
preset limit.

3. Design a ladder logic diagram that will control a pedestrian
crossing with a set of traffic lights. A press button on each side of
the street act as inputs. “Red”, “Amber” and “Green” traffic
lights, “Walk” and “Don’t Walk” indicator lights are the outputs.
When a pedestrian presses a button momentarily, there is a 60
second delay before the “Green” lights are extinguished and the
“Amber” lights are illuminated. “Amber” is illuminated for 10
seconds, then is extinguished, and “Red” is illuminated. There is
now a 2 second delay before the “Walk” signs are illuminated.
“Walk” is illuminated for 60 seconds after which time it is
extinguished and the “Don’t Walk” signs are flashed on and off
for 10 seconds. After 10 seconds, “Don’t Walk” is held
continuously on. At this time, there is a 2 second delay before the
Red lights are extinguished and the Green lights are illuminated.
The Green lights are kept illuminated if there is no momentary
press of the pedestrian button. If a pedestrian presses a button
more than once while the Green lights are illuminated,
then the system only responds to
the first press. If a pedestrian
presses a button during the
“Walk” and flashing “Don’t Walk”
parts of the cycle, then these
presses are ignored.

1912.7 Programmable logic controllers

192

This project is an analog to digital data acquisition system that reads
temperature from a thermocouple and interfaces this to the computer’s
serial port. No special computer interface card is required. This type of
interface is suitable for relatively slowly changing physical quantities. The
interface system requires a ±5 V power supply and a modest number of
integrated circuits which are readily available from electronics parts
suppliers. It can be used with virtually any PC equipped with a serial port.

2.8.1 Serial data acquisition system

ADC

UART
RESET

CLOCK

LINE
DRIVER

Digital data to
serial port

SAMPLE
AND HOLD

THERMOCOUPLE
INPUT AND COLD
JUNCTION
COMPENSATION

INSTRUMENTATION
AMPLIFIER

DAC
Parts list:
1 × ADC0804 A to D converter
1 × 6402 UART
1 × 7400 NAND
1 × 232CPE RS232 line driver
1 × 74HC04 hex inverter CMOS
1 × 74HC393 CMOS counter
1 × 4.9152 MHz crystal
2 × 33 pF; 1 × 147 pF (or 3 × 47 pF);
4 × 1 µF; 1 × 4.7 µF; 1 × 47 µF;
2 × 3.3k; 1 × 10M; 1 × 100k;
1 × 1k; 2 × 10k

1932.8 Data acquisition project

ADC0800

0–5 V analog
input DB0-7

WR

INTR

+Vin

Osc
CLK

RD
CS

−Vin

AGND

A negative pulse at INTR
signals the UART (TBRL)
that data is ready and thus
is latched. A 0−1
transition at TRE indicates
data has been sent and
triggers the ADC to
initiate a new conversion.
TRE has to be pulsed low
to start the sequence.

6402 UART

74HC393
Counter

74HC04
Inverter

7400
NAND

232
Line

Driver

CLK

Reset pulse

RS232 out
to serial port

TTL out

Osc

MR

TRC

TBR0-7

TRE

TRO
TBRL

T1in

T1out

CP1
CP2

Q31
Q02

PI
CLE2
CLE1
EPE
CRL

SBS

+5 V

(+10 space,
 −10V mark)

The ADC converts a 0−5 V analog signal to an 8-bit digital value (0−255).
This digital value is passed through a UART which serialises the data into a
bit stream for transmission over a single wire to the computer’s serial port.

Data from the circuit
appears as a serial bit
stream at RD on the
computer serial port.
The data consists of a
start bit, 8 data bits, and
1 stop bit.
Communications
software can be used to
capture the data for
display or storage as
desired.

4.9152 MHz

Newnes Interfacing Companion194

6. Now, we wish to indicate to the UART
that data appearing at TBR1 to TBR8
is valid and ready to transmit when the
ADC conversion is completed. Select a
suitable signal line from the ADC and
connect to TBRL on the UART.

1. Connect an ADC0804 IC as shown in the figure below. Use +5 V for Vcc.
2. Connect 2 V DC to +Vin (analog input) and measure the voltages that

appear on the digital outputs.
3. Comment on the binary number indicated by these voltages (DB7 to

DB0).

2.8.2 Circuit construction

4. Position the UART on the laboratory breadboard and configure the
device for 8 data bits, no parity, 1 stop bit.

5. Set CRL, PI and EPE to 1, and SBS,
SFD, and RRD to 0. Use +5 V as Vdd.

7. We also wish to initiate a new
conversion at the ADC after the data at
the UART has been sent. Select a
suitable signal line on the UART and
connect to WR on the ADC.

Character length
select CLS1 CLS2
5 0 0
6 1 0
7 0 1
8 1 1

Parity PI EPE
None 1 x
Even 0 1
Odd 0 0

SBS, stop bits, 0 for one,
1 for two

10k

147 pF

AD
C

080410k

+5 V

OSC

Digital
output

DB0

DB7

Analog
signal in

CLK

DGND

+Vin

−Vin

AGND

CS

RD

WR

Vref/2

INTR

1952.8 Data acquisition project

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

VDD
not used
GND
RRD
RBR8
RBR7
RBR6
RBR5
RBR4
RBR3
RBR2
RBR1
PE
FE
OE
SFD
RRC
DRR
DR
RRI

TRC
EPE

CLS1
CLS2

SBS
PI

CRL
TBR8
TBR7
TBR6
TBR5
TBR4
TBR3
TBR2
TBR1
TRO
TRE

TBRL
TBRE

MR

64
02

to line
driver
circuit

connect to
DB0–DB7 at
ADC0804

8. Place the line driver 232CPE chip on the laboratory breadboard.
9. Connect the TTL output from the UART to a TTL input on the

232CPE chip. Note: the 232 chip is a dual IC with two sets of separate
drivers. Select either T1 and R1 or T2 and R2.

10. Connect capacitors, resistors and
supply voltage to the 232CPE chip
as required. Note polarity of
the capacitors.

TTL out
RS232 in

TTL in

TTL in

TTL out

RS232 in

+5 V

RS232 out

1 µF

1 µF

1 µF

3.3k

+
C1+

V+

C1-

C2+

C2-

V-

T2out

R2in

Vcc

GND

T1out

R1in

R1out

T1in

T2in

R2out

232

3.3k

+

+

+
1 µF

+5 V

+5 V

Newnes Interfacing Companion196

11. Construct a crystal oscillator using high speed CMOS inverters
74HC04.

12. Divide the clock signal down to obtain a baud rate of 9600 using a high
speed CMOS counter 74HC393.

13. Connect the stepped-down clock signal to the transmitter clock input
(TRC) on the UART.

153.6 kHz (9600 baud)

76.8 kHz (4800 baud)

38.4 kHz (2400 baud)

CP1

MR1

Q01

Q11

Q21

Q31

GND

Vcc

CP2

MR2

Q02

Q12

Q22

Q32

74H
C

393

CLK signal to
UART is to be 16
times the baud rate

19.2 kHz (1200 baud)
307.2 kHz
(19 200 baud)

74H
C

04
33 pF

10M

33 pF

+5 V

+5V

4.9152 MHz

1972.8 Data acquisition project

14. Construct a master reset circuit for the UART using a 7400 NAND
gate and associated components. Calculate suitable values of R1 and C
to give a time constant of about 2 sec.

15. Connect the output of the master
reset circuit to MR on the UART.

Time constant
= 1/R1C

16. The interface circuit is now ready
for testing. The first step in testing
the circuit is to determine whether
or not there is a clock signal at the
UART. Display the signal at TRC
on a CRO and rectify any wiring
errors in the clock circuit.

17. Next, tie the analog input to
ground (0 V) and check the
voltages at the digital output of the
ADC. They should all be at 0 V.
Rectify any wiring errors before
proceeding.

18. Check the TTL signal at the output
of the UART (TRE). There should
be a +5 V pulse (the stop bit) after
a series of lows (0 V) which is the
data.

20. Now apply a small DC signal to
the analog input on the ADC
and verify that the output from
the 232 line driver is consistent
with that applied. (The
magnitude of the byte appearing
as data in the bit stream on the
output of the line driver should
be consistent with the
magnitude of the DC input
signal from 0−5 V range.)

19. Check the signal at the output
of the line driver to ensure that
these same logic levels are
represented in −10 to +10
logic.

to MR

R1

C

7400

+5 V

1k

Newnes Interfacing Companion198

21. Configure a 25 pin or 9 pin connector cable as a null modem, with
hardware handshaking (connect RTS on the computer serial port plug
to one of the spare RS232 inputs on the line driver IC).

22. Now, some handshaking is required. When the receive buffer is full,
RTS is set high by the receiving computer or our applications program.
When the receive buffer is empty, RTS is set low. When the transmit
buffer on UART is empty, UART sets TRE high. When transmission is
in progress, TRE is low. We wish to arrange things so that when RTS
is low and TRE goes from low to high, the WR signal on the ADC goes
from low to high and remains high during conversion.

On our serial interface board,
the RTS line will be controlled
by us by connecting it to the
appropriate pins on the other
ICs. However, it must be first
passed through the line driver
to convert the RS232 logic
levels to TTL logic.

Serial interface
circuit board 232
line driver.

Plug to computer
serial port

RD
RTS
CTS
DTR
DSR
DCD
RI
GND

TD

Receiving
computer

From
RS232
out

To
RS232
in

When the receive buffer is full, RTS is set high by the receiving computer
(−10 V on RS232 signal lines from line driver). When the receive buffer is
empty, RTS is set low (+10 V on signal lines). When the transmit buffer on
the UART is empty, the UART sets TRE high. When transmission is in
progress, TRE is low. We wish to arrange things so that when RTS is low
and TRE goes from low to high, the WR signal on the ADC goes from low
to high initiating a new conversion WR and remains high during conversion.

+5

RTS
+5 full
0 empty

High when buffer empty (RTS low),
otherwise low when buffer full.

TRE

TRE is set low by UART while transmission
is in progress. TRE goes high when transmit
buffer is empty signalling completion of
transmission of character.

1992.8 Data acquisition project

Consider the logic circuit on the previous page. When transmission is in
progress, and the buffer is empty or full, output is high. When the
transmission is complete, the output is low if the buffer is empty, otherwise
high. Thus, if this output goes low, transmission is complete and receive
buffer is empty, therefore a new conversion should be initiated. However, a
new conversion requires a low to high transition on WR. Hence, if this
signal is inverted, then the required action is obtained. That is, when
transmission is complete and buffer is empty, final output goes from low to
high and remains high. A new conversion is initiated, which when
complete, INTR signals the UART to transmit. TheUART sends TRE low
while transmission is in progress which sends WR low.

4.7 µF
1k100k

to TRE

to MR
to WR

RS232 in

+5V

RS232 out to
RD on serial port

1µF

1 µF

1 µF

3.3k

+
C1+

V+

C1−

C2+

C2−

V−

T2out

R2in

Vcc

GND

T1out

R1in

R1out

T1in

T2in

R2out

232 3.3k

+

+

+
1 µF

RTS from
serial port

From TRO

7400

+5 V

An inverter can be fashioned from
a NAND gate as follows:

Newnes Interfacing Companion200

1. In this part of the project, an assembly language program will be
written to perform the following steps:
(a) Initialises the serial port (COM1 or COM2).
(b) Causes RTS to be set at logic high (−10 V on RS232 signal line).
(c) Reads in one byte from the serial port.
(d) Displays the value on the screen.
(e) Causes RTS to be set logic low (+10 V).
(f) Allows the program to be terminated by pressing any key on the

keyboard.

To initialise the serial port, BIOS service routine 0 is used. The port to be
initialised (0 for COM1, 1 for COM2) is specified in the DX register. The
initialisation parameters are assembled into a byte from the information
given in the table.

The service to be called (0) is placed into AH. The byte containing the
initialisation information is placed in AL. The serial port service is called
through interrupt 14H. Thus, to initialise the serial port COM2 to 9600
baud, 8 data bits, 1 stop bit and no parity, the following assembly language
instructions are required:

MOV DX,01H ;SELECT COM2
MOV AH,0 ;INITIALISE SERIAL PORT
MOV AL,0E3H ;9600,N,1,8
INT 14H

There are four BIOS services available for the serial port. The number for
the service to be called is placed into AH. Parameters or data for the
service are placed in AL. Interrupt 14H is called, and any results placed in
AL (or AX for service 3).

Assembly language

In this part of the project, a computer program is required to operate the
serial data acquisition system. The program is to operate the control lines
and data signal line of the serial port. Such a program can be implemented
in low level assembly language or an applications language like BASIC.
The procedure here assumes that the serial data acquisition system has been
built and is working properly. This can be verified using an oscilloscope.
With RTS from the computer’s serial port held low (+10 V on actual signal
line), then there should be a bit stream of data at RD.

2.8.3 Programming

2012.8 Data acquisition project

2. Now, the serial interface board is controlled by a signal on the
computer’s RTS line. To start analog to digital conversions, the voltage
on the RTS line needs to be set at −10 V (which is TTL logic high).
This is called hardware handshaking. There is no BIOS service
available which controls RTS and so writing directly to the modem
control register (MCR) will be necessary. To start conversions, a logic
1 is placed in the RTS bit of the MCR (and OUT2 is also set to 1 to
allow the BIOS routines to work).

Purpose COM1 COM2
Tx,Rx data 3F8 2F8
Interrupt enable 3F9 2F9
Interrupt ident 3FA 2FA
Line control 3FB 2FB
Modem control 3FC 2FC
Line status 3FD 2FD
Modem status 3FE 2FE

Determine a bit pattern and hence a hex number to write to the MCR to
enable conversions. Then determine the hex number to write to the
MCR to inhibit conversions. Note: A logic 1 in the RTS bit sets the

RTS logic level low (+10 V on signal
line) which starts conversions on the
interface card.MCR (Modem Control Register)

7 0

DTR
RTS
OUT 1
(unused)

OUT 2
0 deactivate interrupt
1 activate interrupt

Loopback
0 normal operation
1 loopback mode

Bits Baud
7 6 5 Rate
0 0 0 110
0 0 1 150
0 1 0 300
0 1 1 600
1 0 0 1200
1 0 1 2400
1 1 0 4800
1 1 1 9600

Bits Parity
4 3
0 0 none
0 1 Odd
1 0 None
1 1 Odd

Bit No.
2 stop bits
0 one
1 two

Bit Data
1 0 bits
0 0 unused
0 1 unused
1 0 7
1 1 8

BIOS services
0 initialise serial port
1 send one character
2 receive one character
3 read serial port status

Despite these services being
available, they are actually
particularly unhelpful as we
shall see.

Newnes Interfacing Companion202

MOV DX,02FCH
MOV AL,0AH
OUT DX,AL

OUT DX, AL or AX

IN AL or AX, d8/DX

3. The hex codes which set and clear the RTS line need to be written to
the MCR which, for COM2, is located at I/O port address 2FCH. The
MOV instruction cannot be used for this since MOV writes data to
either registers or regular memory locations. The assembly language
instructions IN and OUT are used to write to port addresses.

Now, the OUT instruction has two forms. The first form is:
OUT d8, AL or AX

d8 is an 8-bit port address from 0 to 255 which is fine if a write to a
port with an address in this range is required. If a write to a port
with a higher port address is needed, then this 16-bit number needs
to be loaded into DX and then the OUT statement is used to obtain
the address from DX. Thus, the second form of the statement is:

A byte or a word is written depending on whether AL or AX is
specified as the source. To write a byte to location 2FCH, the byte is
loaded into AL, and the number 2FCH is loaded into DX and thus:

4. To read in a byte from the serial port, the BIOS “receive one character”
service and call interrupt 14H can be used. However, when this is used,
interrupt 14H clears the MCR and control of RTS is lost. Thus, RX/TX
register needs to be read (located at the I/O port base address 3F8H or
2F8H) directly with the IN instruction.

The IN instruction has a very similar syntax:

The source is specified by either the I/O port address in DX or an 8-bit
number directly (for ports 0−255). The byte read is written to AL. If
AX is specified as the destination, then a word is read from the port. In
this case, the port only gives us a byte to read (i.e. I/O port address
3F8H or 2F8H contains 1 byte read from the serial port receive
buffer). Thus, AL must be specified as the destination.

2032.8 Data acquisition project

5. The serial port can now be initialised (using a BIOS interrupt call),
conversions can be started and stopped (using OUT to the MCR) and
data can be read (using IN). It would be convenient to display the byte
on the screen and also to allow the user to exit the program by pressing
a key. These last two features can be readily incorporated using BIOS
service routines.

MOV AH,01H ;KEYBOARD SERVICE
INT 16H
JNZ END
JMP READ

Keyboard services are called through interrupt 16H. The service to be
called is specified in AH. We are interested in service 1 which reports
whether or not there is a character in the keyboard buffer. If there is a
character in the buffer, then the service sets the zero flag (ZF) to 0. If
there is no character in the keyboard buffer, ZF is set to 1. A jump
statement can then be used to terminate the program.

Video services are called through interrupt 10H. To write a character to
the screen, there are a number of services available. One that can be
used is service 9H. This service writes an ASCII character to the screen
at the current cursor position and does not advance the cursor position
(other services automatically advance the cursor position so that the
screen would be filled with data in our present application as characters
were read from the serial port). The character to be written to the
screen is specified by the number in AL. The service to be executed is
specified by the number in AH.

MOV AH,9H ;OUTPUT SCREEN SERVICE
INT 10H ;BYTE TO OUTPUT IS ALEADY IN AL

Note: The video BIOS services allow a character to be written to the screen. A
character means an ASCII character. That is, the hex number in AL is treated as
an ASCII code and the matching character symbol appears on the screen. To
have the actual number appear, rather than the ASCII interpretation of that
number, then one has to analyse the number and have the program output the
ASCII codes corresponding to each digit in the number to be displayed.

Newnes Interfacing Companion204

1. Write a program in BASIC that will perform the following steps:

(a) Accept user input which specifies baud rate and COM port.
(b) Initialises the serial port (COM1 or COM2).
(c) Causes RTS to be set at logic high (−10 V on RS232 signal line).
(d) Causes RTS to be set logic low (+10 V).
(e) Tests to see how many bytes are waiting to be read.
(f) Tests to see how much space is left in the input buffer.
(g) Reads in 1 byte from the serial port and displays the value in

decimal on the screen.
(h) Brings all of the above functions together so that the program

continuously displays the byte read at the serial port on the screen.
At the same time, the program is to halt and continue transmission
of data from the serial interface board if the buffer becomes too full
or empty as required.

Note: Make your program user-friendly. That is, allow the program to
continuously read the serial port until the user presses Esc at which time
the program will close the file handle and exit gracefully to the operating
system or the BASIC interpreter prompt.

BASIC

Questions:
(a) Calculate the aperture time and maximum frequency obtainable without

aperture error for the conversion time you are using in this circuit.
(b) Calculate the required baud rate that would provide this maximum

frequency.
(c) Compare with the maximum frequency obtained from your circuit.
(d) Suggest a method (or two) by which the maximum frequency may be

increased.

2052.8 Data acquisition project

−V

+V

1. Construct a sample-and-hold control circuit using a 7476 JK flip-flop
as shown but do not connect R to INTR yet. Rather, supply +5 V to R
from the power supply.

2. Test the operation of the flip-flop by providing a negative start pulse
and observing the Q output. Then put 0 V at the R input and observe
the Q output.

3. Make sure the flip-flop is working correctly, then disconnect R from
the ±5 V supply and connect to INTR on the ADC.

4. Connect the LF398 sample-and-hold IC as shown:

2.8.4 Sample-and-hold

Analog in

+5V

0.01 µF

to TBRL

to handshake
circuit (or TRE)

Lo
gi

c
in

pu
t

Output

Parts list:
1 × 7476 JK flip-flop
1 × LF398 sample-and-hold
1 × 0.01 µF capacitor

7476

CLK1

Vcc

S1

R1

J1

CLK2

S2

R2

GND

K1

Q1

Q1

J2

Q2

Q2

K2 0804INTR

WR

+Vin

LF398

1

2

3

4 5

8

7

6

Newnes Interfacing Companion206

The LF398 requires a bi-polar voltage supply. Ideally, this needs to be
a few volts greater than the maximum signal voltage. ±10 V would be
acceptable, but ±5 V will suffice if a ±10 V supply is unavailable but
the output signal will be reduced in amplitude.

• Start pulse initiates conversion since it is connected directly to WR.
• Since SET is high, and initially, RESET is high, the output Q will

respond to the clock going low and since J is high (with K low), Q is
sent low. Sample will be latched on clock signal going low. Conversion
actually begins when clock (WR) goes back high.

• At the end of conversion, INTR goes low which sends a low to RESET
sending Q high independent of the signal at J and sending sample and
hold to “sample”.

Questions:
(a) Make some comment about the width of the steps given by the LF398

IC in relation to the frequency of the input signal.
(b) State whether or not the inclusion of a sample-and-hold circuit

improves the maximum frequency which can be digitised without
aperture error.

(c) Is there are any other aspect of your system that might cause the upper
limit of frequency to be rather low?

5. Using a sine wave signal, compare the waveforms (using a CRO) on
the input and the output of the LF398 sample-and-hold IC. Draw these
waveforms (you may like to increase the frequency of the signal to
about 100 Hz to obtain a clear display). Measure the width (in
microseconds) of the steps in the LF398 output.

6. Investigate the signal appearing on the logic input of the LF398 and
note the time between each signal pulse.

7. Compare the upper limit to the frequency response of the A to D
system with and without the LF398 in use.

The sequence of operations is:

2072.8 Data acquisition project

To
RS232 out

For the purposes of demonstration, the serial data acquisition system can be
easily modified to include a digital to analog facility. Digital data from the
computer will be sent (via the line driver IC) to the receive register of the
UART. This digital data can then be converted to an analog signal using the
DAC0800 IC and monitored on a voltmeter or oscilloscope.

2.8.5 Digital to analog system

Serial
interface
circuit board
232 line
driver.

Plug to
computer
serial port

RD
RTS
CTS
DTR
DSR
DCD
RI
GND

TD
From
RS232 out
To RS232
in

To RS232
in

1. The first step in our DAC converter is to obtain a digital signal from
the serial port of the computer. Connect the TD signal line from the
computer serial port to an available RS232 IN pin on the 232 line
driver. Connect the corresponding TTL out to pin RRI (receive register
input) on the 6402 UART.

2. Connect CTS from the computer serial port to an available RS232 out.
Set CTS high so that the sending computer will send data continuously.
Thus, connect the corresponding TTL IN to +5 V on the circuit board.

3. Connect the DAC0800 into the circuit as shown with the digital inputs
being connected to the digital outputs from the UART. Also, connect a
clock signal to the receiver circuit on the UART by connecting pin 40
to pin 17.

4. Attach a voltmeter to Vo.
5. Modify your interface program to include a write operation. As a

demonstration of the DAC operation, the overall procedure is first to
feed in an analog signal to the ADC and transmit the digitised output to
the computer. Then the computer is going to send the digitised signal
back to the circuit board and the DAC is going to convert the signal
back into an analog output.

Parts list:
1 × DAC0800 D to A converter
2 × 4.7k; 2 × 10k
1 × 0.01 µF; 2 × 0.1 µF

Newnes Interfacing Companion208

lsbmsb

Vo

+5 V
10k

10k

to pins RBR8 to RBR1 on
the 6402 UART

to 0−10V
adjustable
supply or
+5 V fixed

Vref

0.01 µF0.1 µF

0.1 µF

−5 V

+5V

5k

Questions:
(a) Compare the analog output voltage level from the DAC

for 0 V and a steady 5 V on the input to the ADC. Can
you determine the significance of Vref on the DAC?

(b) Observe the output from the DAC on a CRO when a sine
wave is fed into the input of the ADC. Comment on the
differences in the shape of the two wave forms.

6. With a steady 0−5 V signal applied to the ADC input, and the interface
program running, measure the output voltage of the DAC and adjust
Vref (if an adjustable power supply is available) so that 255 or FF on the
input to the DAC gives +5 V on the analog output. Vre = 2.3 V should
be about right. If no adjustable power supply is available, then set Vref
to +5 V and record the analog output voltage for 0 and FF on the digital
inputs.

7. Replace the steady DC input analog signal with a sine wave output
from a signal generator. Remember, the sine wave input to the ADC
has to be positive going always and swing between 0 and 5 V.

8. Attach a CRO to Vo and monitor the analog output signal.

VLC

Iout

V−

Iout

B1

B2

B3

B4

CMP

Vref−

Vref+

V+

B8

B7

B6

B5

D
AC

0800

5k

2092.8 Data acquisition project

Newnes Interfacing Companion210

211

3.0 Signal processing

The signals from a transducer are generally of very low magnitude. To
prepare them for the computer interface, they must be amplified to an
acceptable level and filtered to eliminate unwanted noise. This is the
process of signal processing.

In Part 1 of this book,
we are mainly interested
in transducers.
• A sensor is a device

which responds to a
physical stimulus

• A transducer is a
device which converts a
physical stimulus to
another form of energy
(usually electrical)

Physical
phenomena:
Sound
Meter reading
LED indicator
Digital display
Chart recorder
VDU output

Physical
phenomena:
Temperature
Voltage
Position
Velocity
Force
Pressure
Radioactivity
Light intensity
Resistance
Humidity
Gas concentration
Magnetic field
Frequency
Sound level

Actuator
provides a
physical

response to
electrical signal

Actuator

Optional
feedback

Transducer
(sensor and

preamplifier)

Amplifier and
signal

conditioning

Computer
interface

Part 2 of this
book is
concerned with
computer
interfacing.

Part 3 of this
book covers
instrumentation
and signal
processing.

Newnes Interfacing Companion212

213

3.1.1 Instrumentation

Qi Q1 Q2 Q3

Input Output

Q1 = f(Qi) Q2 = f(Q1) Q3 = f(Q2)

It is desirable to have linear relationships between the inputs and outputs of
the various processes so that Q3 = K1K2K3Qi.

In practice, errors and noise are transmitted at each step along with the
signal of interest. The process of instrumentation is to maximise the
transmission of signal and to minimise the errors and noise. The process is
concerned with:

Instrumentation is concerned with producing a measurable output from the
signal provided by a transducer. This is usually done through a series of
steps or processes, starting with the transducer signal or input, Qi.

• the electrical nature of signals and methods of measurement
• signal processing by the application of a transfer function to

provide amplification and filtering
• the origin and nature of noise in the signal
• signal recovery – filtering, averaging, smoothing, etc.

An important issue in connecting a transducer to a preamplifier is to
ensure that maximum signal is transferred by a process called impedance
matching.

∆Vs – signal
actually
produced by
source

∆Vin – signal
actually
amplified

Ideally, Rin >> Rs because otherwise, negligible ∆Vin appears at the
amplifier. That is, if RS >> Rin, then most of the voltage variations ∆VS
appear across Rs and not at the amplifier input. Amplifiers should have a
high input impedance Rin compared to Rs, the output resistance of the
source.

Vs

Rs

~

Vin

Rin

AmplifierTransducer

Newnes Interfacing Companion214

3.1.2 Transfer function

Input signal
from

transducer

Output
response to

meter or
recorder

C

R

Vin(t) Vout(t)

There is a definite relationship between the input signal S(t) and output
response R(t) of an electronic circuit. The relationship is called the
transfer function.
The transfer function is the ratio of the output voltage over the input
voltage. This is a general definition and includes any phase effects that
might be present in the circuit. For example, for the simple RC low pass
filter shown below, the transfer function is:

RCj1
1

V
V

in

out
ω+

=

Vout and Vin are either
peak or rms values and
are vector or phasor
quantities. j is the
square root of −1, that
is, this equation
contains complex
numbers.

Later, we shall see how the transfer function for a wide variety of circuits
(mainly filter circuits) can be obtained easily using operator notation. The
transfer function for a particular filter circuit can be used to modify the
signal being measured so as to eliminate noise (i.e. unwanted information).
The mathematical representation of the transfer function allows the effect
of various filter and amplifier circuits to be analysed and designed before
any actual circuit is constructed.

Transfer
function

2153.1 Transfer function

3.1.3 Transforms

Many physical phenomena can be described by differential equations,
that is, equations which involve derivatives. A short-hand way of writing
‘the derivative with respect to’ is to use the differential operator. For
example:

Dy
dx
dy

=

Here, D is a differential operator which, when applied to a function y(x),
yields a new function in x. The differential operator may be quite complex,
involving derivatives of higher orders. For example:

432

2

23

3

14

4

o a
dx
da

dx
da

dx
da

dx
daD ++++=

thus

ya
dx
dya

dx
yda

dx
yda

dx
ydaDy 432

2

23

3

14

4

o ++++=

After the operator has been applied to the original function, a new function
is formed. That is, the original function has been transformed into another
function.

The differential operator is very useful for the treatment of many types of
differential equations. Another type of transform is the integral transform
operator T which has the form:

y*D = Y

Original
function

Operator
New function

()[] () () ()sFdtt,sKtftfT == ∫
∞

∞−

Here, f is a function of t which is transformed by the operator T. K is a
function of the variables s and t. The integration produces a new function
of s only and is the integral transform of the original function f(t). The
function K(s,t) can take many forms, and an especially interesting one is
that defined by:

()
ste

0t,sK
−

=

=
The resulting integral transform is called the
Laplace transform L[f(t)] of the function f(t).

t<0

t≥0

an are constants

F(s) is the transform of f(t)

yD
dx

yd 2
2

2
=and

Newnes Interfacing Companion216

3.1.4 Laplace transform

If the function f is a function of t, then the Laplace transform is defined as:

()[] () dtetftfL
0

st
∫
∞

−
=

The resulting integral, that is, L[f(t)], is a function of s only: L[f(t)] = F(s).
F(s) is the Laplace transform of f(t). The symbol ‘L’ is the Laplace
operator which acts on f(t) to give the transformed function F(s).
A particularly interesting case is when f(t) is a periodic function, say
f(t) =sinωt:

[]

22

0

st

s

dte tsintsinL

ω+

ω
=

ω=ω ∫
∞

−

Similarly,

s > 0

[] 22s
stcosL
ω+

=ω

Why are Laplace transforms important to us? Because they allow
differential equations to be solved using algebraic expressions involving
operators. We’ll see how this works in a moment. For now, consider yet
another interesting Laplace transform, that of L[1].

[]

s
1

e
s
1

dte1L

0
st

0

st

=

−=

=

∞

−

∞

−

∫ Well, the question now is,
“What is s”? Answer: It depends
on the problem being analysed.
For sinusoidal signals, it is
appropriate to let s = jω.

The results are shown
here without showing
the working.

s > 0

Why bother with transforms? A particular input signal in the time domain
may be transformed into another signal, or function, in the frequency
domain. The transformed signal may then be operated upon by a filter and
then transformed back into the time domain for display. The transform of a
signal gives information about the composition of the signal.

2173.1 Transfer function

3.1.5 Operator notation

Let

s
1dt

s
dt
d

=

=

∫and

‘s’ is an operator. In this case, a
“differential” operator since the
application of s to a function
takes the time derivative of that
function.

Consider an integrator circuit:
dtV

RC
1V inout ∫=

Vin Vout

It can be shown that the output
voltage is the time integral of the
input voltage:

t

t

Vin

Vout

If the input signal is a sine wave, then the output signal is a cosine wave
(whose amplitude decreases with increasing frequency of the input signal).
It can be shown (see page 218) that the amplitude and phase relationship
between Vin and Vout has the form (in complex number notation):

inout V
RCj1
1V

ω+

=

dtV
RC
1V inout ∫=

when RC is large.

When RC is large, then:

inout V
RCj

1V
ω

≈

But,

in

inout

V
RCs

1

dtV
RC
1V

=

= ∫

Thus,

It appears therefore that in this
application, s = jω.

compare

Similarly for a differentiator,

dt
dVRCV in

out =

when
RC is
small.

and it can be shown:

inout V

RCj
11

1V

ω

+

=

When RC is small, then, with s = jω:

in

inout
RCsV

VRCjV
=

ω≈

Is this s the same as that in the
Laplace transform?

C

R

Newnes Interfacing Companion218

3.1.6 Differential operator

Now, if s = jω, and s also is a differential operator, then exactly what
is ‘s’ ?
Consider the function:

sy

se
dt
dy

ey

st

st

−=

−=

=

−

−

That is, ‘s’ is a differential operator for this function. Thus:

dt
ds =

That is, in the Laplace transform, where K(s,t) = e−st, s can be considered
a differential operator and not just an ordinary everyday variable.

For sinusoidal periodic functions, we can let s = jω and still have s act like
a differential operator. Thus, the s-domain analysis allows us to carry
frequency and phase information (for frequency domain analysis) or
differential time information (for time domain analysis) in our calculations.

To analyse a circuit, the circuit is transformed into the s-domain, and the
necessary algebra performed (which is usually more manageable) and the
results transformed back into the frequency or time domain as required.

This procedure works because in the Laplace transform applied to
periodic sinusoidal functions, s is a differential operator and is also
identified with the product jω.

On the previous page, we saw how this dual nature of s was consistent
with the response of a passive integrator. Let us now apply the technique
again to the passive integrator and also the passive differentiator.

2193.1 Transfer function

3.1.7 Integrator – passive

Q
C
1R

dt
dQV

IdtQI
dt
dQ

VVV

V
C
QV

in

CRin

Cout

+=

=∴=

+=

==

∫

This is a 1st order ‘differential
equation’ involving differentials
with respect to ‘time’.

()

RCs1
1

V
V

Rs
V

C
1

C
QV

RsQ

Q
C
1RsQV

s
dt
d

in

out

C
1

in

out

C
1

in

+
=

+
=

=

+=

+=

=

Now,

thus

This equation is a transfer
function in s. This is not
differential equation, but
simple algebraic expression
involving the differential
operator s. Operator notation
allows us to avoid differential
equations in the time domain
and complex algebra in the
frequency domain.

()

()

2
1

V
V

1CR
jRC1

1
1CR

CjR1

j
C

1R

j
C
1

V
V

j
C

1I

jXIV

j
C

1RI

jXRI
IZV

in

out

222

in

out

Cout

C

in

=

=ω

ω+
=

+ω

ω−
=

ω
−

ω

−

=

ω
−=

−=

ω
−=

−=

=

then

ω-domain analysis

3 dB point

Time domain analysis

let

complicated
algebra

s-domain analysis

Vin Vout

C

R

Newnes Interfacing Companion220

3.1.8 Differentiator – passive

Q
C
1R

dt
dQV

dt
dQI

IdtQ

dtI
C
1IR

VVV
VV

in

CRin

Rout

+=

=

=

+=

+=

=

∫

∫

C

R

Vin Vout

s-domain analysis

RCs1
RCs

V
V

1
V

Rs
VRsV

RsQV

RsQ

Q
C
1RsQV

s
dt
d

in

out

RsC
1

in

C
1

in
out

out

C
1

in

+
=

+
=

+
=

=

+=

+=

=

Now,

Thus

Transfer function in s

ω-domain analysis

()

jXR
R

V
V

IRV
jXRIV

cin

out

out

Cin

−

=

=

−+=

2
1

V
V

1CR
1CR

CR
C
1R

R

j
C

1R

R

in

out

222

22
2

=

=ω

+ω

ω
=

ω

+

=

ω

−

let

3 dB point
It appears that s = jω is
consistent with an ordinary
complex number analysis of the
two circuits. Next we will see the
‘s’ notation used in the analysis
of active filter circuits.

Time domain analysis

2213.1 Transfer function

The transfer impedance of a network is defined as the ratio of the voltage
applied to the input terminals to the current which flows at the output
terminals when the output is grounded.

C

R

Vin Vout

C

RVin Vout

In these simple
cases, the transfer
impedances are:

j
C

1ZT
ω

−=

RZT =

3.1.9 Transfer impedance

Newnes Interfacing Companion222

4. The voltage at the input of
the following filter is
suddenly stepped from 0 to
+5 V. Sketch the resulting
output voltage as a function
of time and calculate the time
required for the output to
settle to within 0.1 V of its
steady state output.

5. Using integration by parts (twice), show that

[]
22s

stcosL
ω+

=ω

Hint:

tsin1v

tdtcosdv
sedu

eu

duvuvdvu

st

st

ω

ω

=

ω=

−=

=

−=

−

−

∫∫

6. Using Euler’s formula, find L[cosωt]:

tsinjtcose tj
ω+ω=

ω

(Hint: L[cosωt] is the real part of the expression)

7. If ()
10s2s

1sF 2
++

= find the inverse Laplace transform given that:

()() ()()asFLesFL 1at1
−=

−−−

and here letting a = 1.

0.1 µF

5k

Vin Vout

2. Design a simple RC filter which will attenuate 50 Hz ‘hum’ by 40 dB.
Determine the effect of this filter on the following AC signals: (a) 500
Hz, 0.8 V rms (b) 10 kHz, 1.2 V rms

3. Calculate the centre
frequency of the
following bandpass filter
circuit:

2 µF

100Ω

Vin Vout
0.5H

3.1.10 Review questions

1. A transducer has an output resistance of 1.2 MΩ. What is the minimum
input resistance required for a preamplifier connected to this transducer if
at least 95% of the signal emf is to be applied to the preamplifier input?

(Ans: 23 MΩ)

(Ans: −20 dB, −1 dB)

(Ans: 160 Hz)

(Ans: 1.15 msec)

2233.1 Transfer function

1. Connect a 741 op-amp to an appropriate power supply and connect the
non-inverting input to ground and the inverting input to a variable DC
voltage source. Describe what happens at the output when the input
voltage is swept from −1 V to +1 V.

2. Sweep the voltage again slowly and determine the input voltage (to
within a millivolt) when the output voltage is zero – you may have to
modify the circuit slightly to obtain the best estimation of this cross-
over voltage.

3. With the non-inverting input still grounded, apply a small AC signal to
the inverting input and measure the open-loop gain as a function of
frequency. Record your readings in a table, and then plot gain in dB
against log of frequency.

4. Determine the open-loop bandwidth of the op-amp.

741

3.1.11 Activities

-

+

+Vcc

Vout

−Vcc

−Vin

+Vin

O/N

O/N-

+

+Vcc

−Vcc

Vin

Vout

Vout

Rin

Rout

Newnes Interfacing Companion224

5. Construct a simple inverting amplifier with a gain of 100. Check the
input offset voltage and connect a nulling circuit to eliminate any
offset.

6. Check the voltage at the inverting input and comment on its value.
7. Measure the frequency response of the amplifier. Determine the

bandwidth.
8. Measure the input resistance of the 741 IC by altering the circuit to a

non-inverting amplifier configuration with a gain of 50.
9. Measure the output resistance by connecting a 100 Ω resistor to the

output and to ground and determining the change from open circuit
output voltage.

10. Alter the circuit to have a gain of 10 and measure the frequency
response and input and output resistances. Compare with previously
measured quantities and comment.

Offset null adjustment:
Ground the input Vin. Turn the
adjustment pot while observing
Vout on an oscilloscope. A range of
several volts each side of zero
should be obtainable. Adjust the
pot for zero on the output. 1 µF
capacitors may be connected
between each power supply pin
on the 741 to reduce RF pickup.

−

+

Vin

Vout

R2

R1

I−
Rin

Rout

−Vcc

10k

Inverting amplifier

−

+

Vin

Vout

R2

R1

I−
Rin

Rout

−Vcc

10k

Non-inverting amplifier

2253.1 Transfer function

11. Construct a difference amplifier with a gain of 40.
12. Measure the frequency response and bandwidth of the amplifier.
13. Having measured the difference gain, devise a method to measure the

common mode gain of the amplifier and then determine the common
mode rejection ratio.

14. Measure the input resistance at each input and comment.

Difference amplifier

−

+

V1

R2

R1

Vout

R3=R1

V2

R4=R2

1

2

21

out
d R

R
VV

V
A −=

−

−

=

Newnes Interfacing Companion226

227

• can incorporate gain
• loading is not such a problem
• cascading of filters for 2nd

order
• don’t have to use inductors

(which are expensive, require
large currents, generate back
emfs)

• tuning of filters can be done by
adjusting resistors

Advantages:
Active filters – op-amp circuits

Passive filters – RLC circuits

Two 1st order filters cascaded together produce a 2nd order filter:

Input Z of 2nd stage = output Z of 1st
stage. To minimise loading, R2 >> R1
and C2 << C1.

1st order filter (1st order differential
equation can describe the filter).

ω

Roll off
20 dB/decade

ω

Roll off
40 dB/decade
(if no loading)

3.2.1 Filters

C

RVin Vout

C1

R1Vin Vout

C2

R2

−

+

Vin

Vout

Z2

Z1

0 V

Newnes Interfacing Companion228

R R

R

V2

Vin

I1

I2

RCs1
RZ

+

=

()

()

()

()RCs2RZ

Z
RCs1
11RCs1R

I
V

RCs1
11RCs1RI

RCs1
RR

R
RCs1RI

ZRI
IZIRV

R
RCs1RII

RI
RCs1
RI

IZV

T

T
2

in

2

2

in

2

2

2

+=

=

+
++=

+
++=

+
+

+
=

+=

+=

+
=

=

+
=

=

Transfer impedance

The transfer impedance of a
network is defined as the ratio of
the voltage applied to the input
terminals to the current which
flows at the output terminals
when the output is grounded.

Now,

with RHS
grounded

A similar analysis for a high
pass network yields

 +
==

RCs
RCs21

Cs
1

I
VZ

2

in
T

Texts on this subject often provide
tables of transfer impedances for
standard network arrangements which
can then be easily combined (in the s-
domain) for a particular application.

As s = jω increases,
ZT increases
(low pass filter)

R

C C

As s increases,
ZT decreases.

3.2.2 T -network filters

C

Vin

R

C

2293.2 Active filters

Vin Vout
Z1

Z2

R1 R1

C1R2

C2 C2

Vin Vout

Transfer
impedance is
obtained with
Vout grounded

()

()

()

() ()

() ()
()

4RCs1
sCR2RZ

RCs4
sCR2R4

CRs2R4
RCs

CRs2R
1

42CRs12
RCs

CRs2R
1

sRC21
sRC

sRC2R
1Z

sCR21
sRCsC

sCR2R
1

Z
1

sRC
sCR21

sC
1Z

sCR2RZ
Z
1

Z
1

Z
1

222T

222

1222

122

1

22

2
2

2
2

111
T

22

22
2

111T

22

22

2
2

1111

21T

+

+
=

+

+
=

+
+

+
=

+
+

+
=

+
+

+
=

+
+

+
=

 +
=

+=

+=

−

−

−

Let

RR2R
CC2C

21

21
==

==

Transfer
impedance

The centre
frequency is:

RC
1

o =ω

ωo

in

out
V
V

ω

Tuned rejection filter

3.2.3 Twin-T filter

Newnes Interfacing Companion230

Integrator

Differentiator

+

I
Vin

R

I
C

+Q −Q

0 V

dt
dVV in

out −=

dt
dVRCV

dt
dVC

R
V

dt
dVC

dt
dQI

R
V

I

in
out

inout

in

out

−=

=

−

==

−

=

t

t

Vout

Vin

Differential equation
in time domain

As the frequency of the input becomes
larger, the slope of the input increases and
thus the magnitude of the output
increases, i.e. gain increases with
increasing frequency.

∫

∫

−=

−=

=

=

=

=

dtV
RC
1V

CV

dtV
R
1Q

dt
R

VdQ

R
dt
dQ
iRV

inout

out

in

in

in

Vin
−

+

I
R

I

C

+Q −Q

0 V
Vout

t

t

Vin

Vout

integral equation in
time domain

As the frequency of
the input becomes
larger, the output
does not have time to
reach as high a
value, i.e. the gain
decreases with
increasing frequency.

3.2.4 Active integrator/differentiator

−

2313.2 Active filters

()

ω

−=

ω

−=

ω

+=

−−=

=

RCj
1

V
V

RCj
V0

j
C
I0

IjX0V
IRV

in

out

in

cout

in

−=

=

ω
==

i

f

in

out

i

cf

Z
Z

V
V

RZ
Cj

1XZNow

This is a general transfer function
that holds for a general circuit with
feedback elements.

and

thus

Transfer function in
ω-domain

Inverting
output

R
V

I in
=since

Now, s = jω

inout

in

out

V
s
1

RC
1V

RCs
1

RCj
1

V
V

−=

−=

ω

−=

dtV
RC
1V

s
1dt

inout ∫

∫

−=

=but

thus

Transfer function
in s-domain

I is flowing
towards Vout so
is negative

3.2.5 Integrator transfer function

Vin
-

+

I
R

I

C

+Q −Q

0 V
Vout

General transfer function

Newnes Interfacing Companion232

CsR1
1

R
R

V
V

V
Z
ZV

CsR1
R

sC
R
1Z;RZ

21

2

in

out

in
i

f
out

2

2

1

2
fi

+
−=

−=

+
=

+==

−

Without R2, at low frequency,
the gain (Vout/Vin) becomes
very large and at DC,
approaches the open-loop
gain. Need a low frequency
cutoff to eliminate drift. This
is the function of R2.

inout V
RCj

1V

ω
−=

R2

If s is small, then:

in
1

out

in
1

2
out

V
CsR

1V

V
R
RV

−=

−=

If s is large, then

Frequency domain analysis

[]

[]

[]

[] 2
1

2
1

2
2

1

2

in

out

in2
2

2
2

1

2
out

in2
2

2

1

2

in
21

2

in
21

2
out

CR1

1
R
R

V
V

V
CR1

CR1

R
RV

V
CR1
CjR1

R
R

V
CjR1

1
R
R

V
sCR1

1
R
RV

 ω+

=

ω+

 ω+

=

ω+

ω−
−=

ω+
−=

+
−=

at R2ωC = 1

2
1

R
R

V
V

1

2

in

out
=

Note, compared to
the passive
integrator, this circuit
contains an element
of “gain” equal to the
ratio R2/R1.

Keep in mind that s = jω
hence the use of | |.
Need to square R2sC
and then take the
square root to find the
magnitude.

An active integrator
can be modified to act
like a low pass filter.

Let s = jω

since

then

Transfer
function in
s-domain

Transfer function in ω-domain

s

in

out
V
V

|R2Cs|=1

1
2

R
R

Integrator

3.2.6 Low pass filter – active

Vin
-

+

I
R

I

C

0V

2333.2 Active filters

R
VV

I

sCV
V

I

sCV
V

I

R
VV

I

IIII

outN
4

2out
sC

1
out

3

1N
sC

1
N

2

Nin
1

4321

2

1

−

=

−=

−

=

==

−

=

++=

() ()

()
() () ()

1RsC3RsCC
1

V
V

1sRCV2sRCsRCV
sCVR

RIV
1sRCV2sRCVV
R
1sCV

R
2sCV

R
V

R
V

R
V

sCVsCV
R

V
R

VV
sCVsCV

R
VV

2
22

21in

out

2out12in

2out

3N

2out1Nin

2out1N

NoutN
2out1N

in

outN
2out1N

Nin

++

−
=

++−+=

−=

=

+−++=

+−+

+=

+−+−+=

−
+−+=

−

Transfer
function

Letting

C
3
bC

C
b
3C

2

1

=

=

and

1RCsbsCR
1

1RsC3RsCC
1

V
V

222

2
22

21in

out

++

−
=

++

−
=

b = 2 critically damped
b > 2 overdamped
b < 2 underdamped

s

in

out
V
V

b < 2

b > 2

b: damping factor

Low pass

The analysis of this circuit in the frequency or time domain would be very
cumbersome. Here we have arrived at a transfer function in the s-domain with very
little effort.

Note: For a negative Vout,
then I3 flows in the
direction indicated and is
thus positive.

−

+

Vin R

C2

0 V

R

C1

N RI1

I4
I3

I2
Vout

3.2.7 2nd order active filter

Newnes Interfacing Companion234

−

+

Vin R

C

0 V

R/2

2C

R
Vout

C

−=

i

f

in

out
Z
Z

V
V

Vin Vout

()
()RCs1R2

Cs2R2RZi
+=

+=

 +
=

RCs
RCs1

Cs
2Zf

()

222 sCR
1

RCs1R2
1

RCs
RCs1

Cs
2

−=

+

 +
−=

The transfer function for this
circuit is easily obtained in the
s-domain using transfer
impedance results for the
T–networks shown previously.
The final transfer function
involves a s−2 term. Now, s is a
differential operator so that s−

1

is an integral operator. Here, we
have an s−

2 which means that
the circuit takes the integral
twice − a double integrator.

y
s
1

dy
s
1ydt

s
dyydt

dt
dysy

=

=

=

=

∫∫

3.2.8 Double integrator

−

+

0 V

2353.2 Active filters

Vout

+

Vin R1

C

0 V

R/2

R2

C

2C

R R

An active filter with a twin–T
network as the feedback element

When twin-T is used as the feedback element, ZT is very high at the centre
frequency ωo and thus the gain of the active op-amp circuit is a maximum.
At other frequencies, ZT is small and thus the gain of the overall circuit is a
minimum. This leads to a bandpass filter with the following
characteristics:

ωo

in

out
V
V

ω

If the twin-T filter moved to the input, we would obtain a band reject or
notch filter.

R2 prevents open-
loop instability at
the centre
frequency ωo

3.2.9 Bandpass filter – narrow

−

Newnes Interfacing Companion236

General
transfer
function

Transfer function
in ω-domainω−=

ω

−

=

−

=

−=

ω

=

ω

−

=

=

RCj
V
V

RCj
V

V

R
V

I

IRV
Cj

I

j
C
I

IZV

in

out

out
in

out

out

iin

i
f

in

out

i
f

i

f

Z
Z

V
V

RCj
Z
Z

Cj
1Z

RZ

−=

ω=

ω

=

=Now

and

Now, s = jω

dt
dVRCV

dt
ds

RCs

RCj
V
V

in
out

in

out

−=

=

−=

ω−=

but

thus

Transfer function
in s-domain

thus

3.2.10 Differentiator transfer function

−

+

I

Vin

Zf

I

Zi

0 V Vout

2373.2 Active filters

[] iout VRCjV ω−=

With an active differentiator, as the frequency increases, the output voltage
increases without limit in the ideal case (actually limited by the V+ and V−

supply). This is undesirable since high frequency noise will be greatly
amplified. The solution is to build in a cutoff frequency. The circuit then
acts like a high pass filter.

Cs
1R

Cj
1R

jXRZ
RZ

1

1

C1i

2f

+=

ω

+=

−+=

=

1CsR
CsR

V
V

V

Cs
1R

R

V
Z
ZV

1

2

in

out

in
1

2

in
i

f
out

+

−=

+

−=

−=

When s is small, then Vout ≈ R2CsVin
When s is large, then Vout ≈ R2/R1Vin

-

+

Vin

Zf

Zi

R2

R1

If we multiply and
divide the numerator by
R1, then we have:

1sCR
sCR

R
R

V
V

1

1

1

2

in

out
+

−=

Letting |R1sC| = 1 gives us
the 3 dB point. Note the
element of gain R2/R1
compared to the passive
differentiator.

Let s =jω

Transfer
function in
s-domain

s

in

out
V
V

|R1Cs|=1

1
2

R
R

Differentiator
[] iout VRCjV ω−=

1CsR
CsR

V
V

1

2

in

out
+

−=

Filter response

3.2.11 High pass filter – active

C

Newnes Interfacing Companion238

()()
() in2

1

12

in
1

1

1

2

in
1

2

in
1

2
out

V
CR1

jCR1jCR0

V
jCR1
jCR1.

jCR1
jCR0

V
CjR1

CjR

V
CsR1

CsRV

ω+

ω−ω+
=

ω−

ω−

ω+

ω+
=

ω+

ω
=

+

=

()()
()

()

()

()

()

()

 ω+

ω
=

 ω+

 +ωω

=

 ω+

 +ωω

=

 ω+

ω+

 ω−

=

ω+

ω−ω+
=

2
1

1

1

2

in

out

in

2
1

22
1

222
1

222
2

in

2
1

22
1

2
2

222
1

2
2

22

in

2
1

22
1

2
2

222
12

in

2

2
1

12
out

CR1

CR
R
R

V
V

V
CR1

1CRCR

V
CR1

RCRRC

V
CR1

CRCRR

V
CR1

jCR1jCR0V

When R1ωC = 1, then

()

2
1

R
R

V
V

V
11

CR
R
RV

1

2

in

out

in
1

1

2
out

2
1

=

+

ω
=

ω

in

out
V
V

R1ωC = 1

1
2

R
R

[] in2out VCRV ω=

Transfer function in ω-domain

Note: The s-domain analysis is much easier to
handle. It allows the general characteristics of a
circuit to be readily analysed. The precise shape of
the frequency response of a circuit needs to be
obtained, however, from the ω-domain analysis.

3.2.12 High pass filter – ω-domain

−

+

Vin

R2

R1C

Vout

2393.2 Active filters

() ()sCR1
sC

sCR1
R

Z
Z

V
V

sC
1sCR
sC

1RZ

sCR1
RZ

R
sRC1

sC
R
1

Z
1

11

1

22

2

i

F

in

out

1

11

1
1i

22

2
F

2

22

2
2F

++

−

=

−=

+

=

+=

+

=

+

=

+=

When s is small, then Vout ≈ R2C1sVin
When s is large, then Vout ≈ 1/R1C2sVin

Integrator
(high pass)

Differentiator
(low pass)

s

in

out
V
V

R1C1s = 1

1

2
R
R

[] in12out VsCRV =

in
21

out V
sCR

1V =

R2C2 s= 1

3.2.13 Bandpass filter – wide

−

+

Vin

0 V

R2

R1C1

Vout

C2

Newnes Interfacing Companion240

i

o

2

i

o

V
V

log20

V
V

log10db

=

=

The voltage gain of a circuit is obtained from the transfer function:

i

f

in

out
v Z

Z
V
V

A −==

and may be expressed as a ratio (e.g. Av = 100). However, the gain of a
circuit may cover several orders of magnitude depending on the
frequency of the input signal. To facilitate this range of possible values of
gain, it is often more convenient to express gain on a logarithmic scale.
The scale chosen is the “decibel” scale (really a power gain).

The square factor is applied because
the decibel scale represents the
“power” output of a circuit and:

R
VP

2
=

3.2.14 Voltage gain and dB

2413.2 Active filters

1. Consider the
filter circuit:

(a) Determine the transfer function of the circuit. (Hint: Write the
differential equation relating the input and output voltages with
respect to time.)

(b) Under what circumstances may the circuit be used as an analog
integrator?

2. Determine the s-domain transfer impedance for the T-type network
shown below.

3.2.15 Review questions

C

RVin Vout

R R

C

Vin Vout

3. (a) Show how the circuit below acts as an analog differentiator.

(b) The differentiator shown above is susceptible to high frequency
noise. Explain why this occurs.

(c) Modify the circuit to reduce high frequency noise and determine the
transfer function of this modified circuit.

(d) Sketch the transfer functions of the original and modified circuits
and discuss their features.

−

+

I

Vin

R

I

C

0 V Vout

Newnes Interfacing Companion242

4. Consider the modified integrator circuit:

(a) What is the function of the feedback resistor R2?

(b) Derive an expression for the transfer function in the s-domain.

(c) Select values of resistors and capacitors to give integration of
signals above 50 Hz.

R2

Vin
−

+

I
R

I

C

2433.2 Active filters

1. Construct the 1st order and 2nd order low pass filters as shown. Choose
component values to give cutoff frequencies of a few kilohertz.

2. Using a sinusoidal input signal, measure the frequency response of the
filter circuits and plot the transfer function of each filter. Compare the 3
dB points and roll-off for each filter.

3. Using a square wave input, examine the step response of each filter.
Compare the responses of the two filters.

4. With the 2nd order filter, alter the value of the parameter b and
examine its effect on the step response of the circuit.

C
3
bC

C
b
3C

2

1

=

=

1RCsbsCR
1

1RsC3RsCC
1

V
V

222

2
22

21in

out

++

−
=

++

−
=

1st order

2nd order

3.2.16 Activities

−

+

Vin R

C2

0 V

R

C1

N RI1

I4
I3

I2 Vout

R2

Vin
−

+

I
R1

I

C

0 V

CsR1
1

R
R

V
V

21

2

in

out
+

−=

Newnes Interfacing Companion244

5. Design a twin-T bandpass filter to have a centre frequency of ωo =
1000Hz.

6. Construct the twin-T network and measure its transfer characteristics.
Plot on an appropriate graph.

7. Using this twin-T network, construct a bandpass filter. Adjust R2 for
stability if necessary.

8. Plot the transfer function of this filter and comment on the significant
features.

9. Determine the theoretical transfer function of this circuit and compare
with that measured.

10. Examine the step response of this filter and comment.

Twin-T network

Bandpass filter

R1 R1

C1R2

C2 C2

Vin Vout

Vout

+

Vin R1

C

0 V

R/2

R2

C

2C

R R

−

2453.2 Active filters

246

2211

22s111

22122

out21111

s

RIRI
RIVRIV

RIRIV
VRIRIV

0V

+=

++=

+=

++=

=

21

out1
1

2111out1

out21111

RR
VV

I

RIRIVV
VRIRIV

+

−

=

+=−

++=

()

21

2
2

212

22122

RR
VI

RRI
RIRIV

+

=

+=

+=

(1)
(2)

(3)

from (1)

from (2)

substituting into (3)

()

() ()

()

()21
1

2
out

1out221

1out2221

221out112211

221out1211

2
21

2
1

21

out1

22111

VV
R
RV

RVRVV
RVRVRV

RVRVRVRVRV
RVRVVRRV

R
RR

VR
RR

VV
RIRIV

−=−

−=−

−=

+−=+

+−=+

+

+

+

−

=

+=

Now, the input resistance of
the negative input is
unbalanced with respect to
the positive input. If V1 is
grounded, then Rin of V2 is
R1 + R2. If V2 is grounded,
then Rin of V1 is R1 (since
when V2 is grounded, the
negative input is a virtual
earth). This can cause
problems with uneven
loading of the sources. To
overcome this, we can design
an input stage using voltage
followers.

Note: The negative input to the op-
amp is not a virtual earth (0 V) in this
circuit. The internal input resistance
of the op-amp is MΩ but because
the input bias currents are nA, Vs= 0
and so the voltage at negative input
is equal to I2R2.

1

2

21

out
d R

R
VV

V
A −=

−

−

=

difference gain

3.3.1 Difference amplifier

V1

R2

R1

Vout

R3 = R1

V2

VS

R4 = R2

I1

I2

I1

I2

−

+

2473.3 Instrumentation amplifier

The common mode rejection ratio (CMRR) is the ratio of the differential
gain to the common mode gain. The common mode gain is that obtained
when V1 = V2

cm

d
10

cm

d
A
A

log20
A
A

CMRR ==

The more general expression for difference gain is:

1
1

2
2

43

21

1

4
out V

R
RV

RR
RR

R
RV −

+

+
=−

With a common mode signal, V1 = V2, thus:

cm

1

2

43

21

1

4

in

out

A

R
R

RR
RR

R
R

V
V

=

−

+

+
=

− Small variations in resistor values
in a circuit can lead to some
common mode gain.

Now consider the following circuit
where the source voltages and output
resistances are included:

()

1S

1S1
1

111

1S11S

RR
VR

V

RIV
RRIV

+

=

=

+=

()
()

()

()

21S

2S21

43S

2S43
2

4322

43S22S

RRR
VRR
RRR

VRR
V

RRIV
RRRIV

++

+

=

++

+

=

+=

++=

for matched resistors

Now, even if VS1 = VS2 and resistors are
matched, V1<>V2 and thus some common
mode gain is the result. The difference in
V1 and V2 gets smaller as RS is reduced.
At RS = 0, V1 = V2 = VS and no common
mode gain. For the highest common mode
rejection ratio, the amplifier should be
driven by low impedance sources – such
as a voltage follower.

3.3.2 CMRR

R2

VS1

VS2

RS

RS

V1 R1

Vout

R3=R1V2

VS

R4=R2

I1

I2

I1

I2

-

+

Newnes Interfacing Companion248

Unity gain (β = 1) voltage followers: high input impedance, low output
impedance.

5
oldin

ooldinnewin

10R

A1RR

≈

β+=
 β = 1
Ao = 105

Signal sources see only high impedances, therefore maximum transfer
of Vs and no uneven loading of the sources.

The amplifier itself is driven by low impedance sources (Rout of an op-
amp is very small: 75 Ω). CMRR is improved. The effect on CMRR of
source impedance is much greater than resistance mismatches.

3.3.3 Difference amplifier with voltage follower inputs

R2

R1

Vout

R3 = R1

VS

R4 = R2

I1

I2

I1

I2

−

+

V1

V2

−

+

−

+

2493.3 Instrumentation amplifier

Feedback resistors Ra and Rb
tend to keep the negative and
positive inputs to the op-amp
at equal potential hence
voltages at R are V1 and V2

()

() ()

()
R

RRR
A

VVRR
R

VVVV

RR
R

VVVVVV

R
R

VVVV

R
R

VVVV

R
VVI

IRVV
IRVV
IRVV

ba
i

21ba
21

2o1o

ba
21

2o211o

b
21

2o2

a
21

11o

21

b2o2

a11o

21

++

=

−++

−

=−

+

−

=−+−

−

=−

−

=−

−

=

=−

=−

=−Now,

thus

Note: This input stage is
not a difference amplifier.
The difference in the output
voltages = the gain times
the difference in the input
voltages. Common mode
signals are passed through
without being amplified. A
proper difference amplifier
rejects the common mode
signal altogether.

Gain increases as R decreases.
If R is made very large, the gain
approaches 1

This is the gain of the input stage.
The gain of the input stage can
thus be altered by adjusting just
one resistor R.

3.3.4 Difference amplifier with cross-coupled inputs

To amplifier
inputs

V1

Ra

−

+

V2

−

+

Rb

R

VO1

VO2

Newnes Interfacing Companion250

()
()

1A
VV

R
R

VVVVR
R

VVVV

RR

R
R

VVV

IRVV

VR
R

VV
VIRV

IRVV
VV
VV

2VV
2VV

A

cm

21

a
21

21a
21

2o1o

ba

b
21

2

b22o

1a
21

1a1o

21

21

2o1o

21

2o1o
cm

=

+=

−

−++

−

=+

=

+

−=

−=

+

−

=

+=

=−

+

+

=

+

+

=

but

and

if

then

Now,

i

cm

cm

i

ACMRR
1A
A
ACMRR

=

=

=

but
thus

But, Ai is the gain of the input
stage which is adjustable via R.
This means that the CMRR is
adjustable. For highest CMRR
we thus require a high value of
Ai (and hence a low value of R).

therefore

2
VV

V 21
cm

+

=

3.3.5 CMRR cross-coupled inputs

V1

Ra

−

+

V2

−

+

Rb

R

VO1

VO22
VVV

VVVV

VV
2

VV
2

VVVV

2
VVVV

21
cm

cm21cm

cm2
21

21
cm2

21
cm1

+

=

−+=

−=

−

−

+=

−

−=

If the input signal consists of a
common mode component,
(e.g. V1 = 5 V, V2 = 3 V means that
Vcm = 3V and V1 − V2 = 2V) then:

Since common mode signals
are not amplified, then:

2
VV

Vo 2o1o
cm

+

=

thus

2513.3 Instrumentation amplifier

An instrumentation amplifier is characterised by a high gain and
high CMRR.

• Both inputs have a high input impedance.
• The gain of the amplifier can be easily adjusted via R.
• The resistors R1 at the input to the final differential amplifier are trimmed

to eliminate amplification of any common mode signal.

()RRR
R

VVVV ba
21

2o1o ++

−

=−

The gain of the input stage is:

The gain of the amplifier stage is:

1

2
d R

RA =

Thus the total gain is the product of the two:

()

()

()21
1

2a
v

1

2
aa

21

1

2
ba

21
v

VV
R
R1

R
R2

A

R
RRRR

R
VV

R
RRRR

R
VVA

−

+−=

++
−

−=

++
−

−=

letting Ra = Rb

It is usual to have the required
gain of the overall circuit
obtained from the input stage
and the R2/R1 term drops out.
The difference amplifier D is
designed for a gain of 1 and its
purpose is to reject any
common mode signal.

3.3.6 Instrumentation amplifier

A

B

D

R2

R1

Vout

R1

VS

R2

I1

I2

I1

I2

−

+

V1

Ra

−

+

V2

−

+

Rb

R

VO1

VO2

Newnes Interfacing Companion252

A non-linear resistor is connected into the feedback circuit. In practice, this
can be a diode, but a transistor connected as a diode is used since the
forward biased transfer function is more accurately exponential. The
exponential nature of the forward biased diode leads to a logarithmic
decrease in gain of the circuit as the input signal is increased.

The feedback transistor has its collector at 0 V (virtual earth) and the base
is also at ground potential (0 V). With the collector and base effectively
shorted together, the device acts like a diode across the base–emitter pn
junction.

The forward bias
transfer function of the
diode is given by the
diode equation:

kTeV
oeII ≈

where Io is the reverse
bias leakage current.

()o1inout

o1

in
out

out

o1

in

kTeV

o1

in

kTeV
o

1in

IRln026.0Vln026.0V
IR

Vln
e

kTV

kT
eV

IR
Vln

e
IR

V
eII

IRV

out

out

−≈

=

=

=

=

=

Transfer
function

Note: This approximation
holds for forward bias
where I >> Io. Thus, the
transfer function shown
here requires Vin to be
positive so that the pn
junction is always well into
forward bias.

This amplifier has a high gain for
small signals (low Vin) and a
(logarithmic) progressively lower
gain for increasing signals.

3.3.7 Log amplifier

−

+

Vin R1

0 V VoutR2

I

Note: e/kT≈ 40
at T = 300K

e = 1.6 × 10-19C
k = 1.38 × 10-23 J/K

2533.3 Instrumentation amplifier

Thus far, it has been assumed that the op-amp has an infinite bandwidth
and that the frequency response of a particular circuit depends only upon
the nature of the external resistors and capacitors. In practice, there is a
limit to the open-loop voltage gain of an op-amp which limits the upper
frequency that may be used.

The upper frequency limit is due to the presence of internal capacitances
within the IC itself which are present intentionally to enhance stability
under feedback conditions.

The bandwidth increases with decreasing voltage gain (increasing
negative feedback).

1 10 100 1k 10k 100k 1 MHz

105

104

103

102

10

0

Bandwidth
Voltage
gain

ω

Increased
bandwidth

Ao

Ac

3 dB
point

For a 741 IC, the (gain × bandwidth) product is fairly constant at about
1 MHz. The roll-off is about 25 dB/decade.

3.3.8 Op-amp frequency response

Newnes Interfacing Companion254

1. The difference amplifier shown has a gain of 10 and a CMRR of 60 dB.

(a) What are the disadvantages of using this circuit as an instrumentation
amplifier?

(b) Design a cross-coupled input stage for this amplifier to provide an
overall gain of 100 and calculate the new CMRR.

(c) If this modified amplifier were presented with a 50 mV difference
signal with 20 mV of common mode noise, determine the nature of
the output voltage.

2. A logarithmic amplifier is constructed using a diode whose reverse bias
leakage current Io is 200 nA. At room temperature, the following
relation applies to the diode:

kTeV
oeII ≈

where e/kT = 40 at T = 300 K. The diode has a maximum forward
bias current rating of 50 mA. In the circuit below, determine a suitable
value of R1 to provide an output of 0.5 V for an input of 20 V.

3.3.9 Review questions

10k

1k

1k

10k

V1 Vout

V2

−

+

−

+

Vin R1

0 V VoutR2

I

2553.3 Instrumentation amplifier

3. A chromel–alumel thermocouple is being used to measure temperature.
A voltage appears at the thermocouple outputs which is dependent of
the temperature difference between the cold and hot junctions. The
voltage is typically a few millivolts. A digital output display shows the
temperature in oC and is driven by an analog to digital converter. The
ADC converts a signal from 0 to 10 V to an 8-bit digital value. The
maximum temperature to be measured is 1000 oC.

(a) Design an instrumentation amplifier which converts the output
from the thermocouple to that required to utilise the full input
range of the ADC.

(b) Determine the resolution of the system.

∆ V

hot junction

0–1000 oC

cold junction

AMP ADC 8-bit
output

4. Under what circumstances is it better to use a difference amplifier than
a single-ended input amplifier?

Newnes Interfacing Companion256

1. Construct a simple difference amplifier and measure the difference
gain and CMRR when the amplifier is driven by high impedance
sources (you may have to connect a large resistor in series with the
input signal). Comment on the results.

2. Add unity gain voltage followers to each input and measure the
difference gain and CMRR of the amplifier. Compare with previous
measurements and comment. (Note: A better op-amp than a 741 may
be required – e.g. LM308N.)

Follower inputs

Difference amplifier

3.3.10 Activities

Instrumentation amplifier

Parts list:
2 × LM308N operational amplifier
1 × 741 operational amplifier
2 × 100 pF
2 × 2.2k; 1 × 56 Ω; 2 × 470 Ω; 2 × 4.7k

V1

R2

R1

Vout

R3 = R1

V2

VS

R4 = R2

I1

I2

I1

I2

−

+

V1

V2

−

+

−

+

2573.3 Instrumentation amplifier

3. Design and construct a cross-coupled input stage for a difference
amplifier but do not connect to the amplifier yet. The cross-coupled
input stage is to have a gain of about 100.

4. Measure the gain of the input stage for various values of R.
5. Measure the common mode gain of the input stage and comment.
6. Connect to the difference amplifier and measure the gain of the overall

circuit, its common mode rejection ratio, and bandwidth. Comment on
the results.

7. Suggest how the gain of the amplifier should be distributed over the
two stages for optimum performance.

8. Connect the output of the thermocouple circuit from Part 1 of this book
to the instrumentation amplifier input, and connect the instrumentation
amplifier output to the analog input of the data acquisition system from
Part 2 of this book.

Cross-coupled input stage

Instrumentation amplifier
LM308N

LM308N

741

0–
5

m
V

fro
m

 th
er

m
oc

ou
pl

e
ou

tp
ut

 c
irc

ui
t

0–5 V
(to analog input
of interface
circuit)

-

+

+Vcc

Vout

−Vcc

−Vin

+Vin

O/N

O/N

For LM308N,
connect a 100 pF
from pin 8 to earth.

R2

R1

Vout

R1

VS

R2

I1

I2

I1

I2

−

+

V1

Ra

−

+

V2

−

+

Rb

R

VO1

VO2

V1

Ra

−

+

V2

−

+

Rb

R

VO1

VO2

8

Newnes Interfacing Companion258

The principal problem with log amps is drift due to the input bias current
of the op-amp. An FET op-amp is usually used to minimise this error. In
the circuit below, an LF356 FET input op-amp is used.
The bias current is roughly balanced with R1 (on the positive input) of
about 100 kΩ. A capacitor 0.01 µF across the transistor helps to stabilise
the circuit against high frequency (RF) oscillations. A large resistor (20
MΩ) is needed in parallel to keep output drift low.
For offset voltage balancing, a multi-turn pot is required since the input
voltage has to span a wide range.

1. Connect the op-amp as an inverting amplifier with a gain of about 100
(i.e. do not use the transistor as a feedback element yet). With Vin = 0,
balance the offset voltage to zero.

2. Now connect the transistor and stabilising components as shown
above.

3. Vary Vin over a wide range to get a rough idea if the circuit is
working. Vout will not change very much (due to it being a log
amplifier).

100k

1k

BC107

0.01 µF

20M

+Vcc

10k

Log amplifier

2593.3 Instrumentation amplifier

+Vcc

4. When you are satisfied that the circuit is working, vary Vin from
about 90 V down to about 10−3 V with about four points per decade.

5. Plot the gain of the circuit with Vout on the vertical axis and Vin on the
horizontal log axis. If you have only linear paper available, plot Vout
vs logVin.

6. Estimate values for the transfer function from your experimental
readings and compare with calculated values.

7. If time permits, try making a log amplifier using a 741 op-amp and
record your findings.

+

−

−Vcc

7
2

3
4

6

5 1
LF356N

+Vcc

10k

Newnes Interfacing Companion260

261

3.4.1 Intrinsic noise
Thermal (Johnson or Nyquist*) noise

[]2
1

fkTR4V rmsn ∆=

fkT4
R

VP

fkTR4V
2

2
n

∆=

=

∆=

Shot noise

feI2i s
2

n ∆=

Rfei2
RiP

n

2
nn
∆=

=

e charge on electron 1.6 × 10-19 C
Is DC signal current (A)
in noise current (A)
∆f bandwidth (Hz)

Power

Power

k Boltzmann’s constant
1.38 × 10-23 J/K

T Absolute temperature
R Resistance
∆f Bandwidth

e.g. 10k resistor at 300
K over a bandwidth of
10 kHz gives an rms
noise figure of 1.3 µV

Noise power is proportional to T and ∆f.

Associated with the randomness of charges moving across a potential
barrier.

Thermal noise and shot noise are present at all frequencies and is called
white noise. Noise may be reduced by reducing any terms in the
expression, e.g. reducing the temperature, resistance and the bandwidth.

• thermoionic emission
• contact points

Strictly speaking, white noise is noise which has a constant power density at
all frequencies over the band of frequencies of interest.

Flicker noise
This type of noise increases with decreasing frequency and is sometimes
called 1/f noise. For this reason, sensitive measurements should not be
made using DC. The precise origin of flicker noise is not well understood.
It is usually not important compared to other noise above 1 kHz.

* Johnson did the experiments,
Nyquist developed the equation.

Note: In general, noise increases with
bandwidth. Noise is due to random fluctuations
which can contribute to a significant high
frequency component of the total signal.
Reducing the bandwidth reduces the amount of
high frequency noise.

Newnes Interfacing Companion262

3.4.2 Environmental noise

This type of noise arises from sources outside the measuring system.
Environmental noise is often called interference. Interference may be
mechanical in nature (from mechanical vibrations) or electrical.
Electromagnetic interference (EMI) is the most common. Such noise may
arise from:

The best method of reducing the effects of noise is to reduce the noise at its
source. This is not always practical, so the next best method is to attempt to
divert the noise signal to ground through the use of filters before it is
registered by the transducer. Failing that, the most common approach for
reducing EMI is to be careful with the physical location of sensitive
components. The major contribution to the effect of noise occurs at the first
stage of amplification. For this reason, a preamplifier should be located as
close to the transducer as possible. The preamplifier should be a
differential amplifier with a good CMRR. Signal leads from the pre-amp to
the main power amplifier should be shielded cable and be routed away
from transformers and mechanical switches. All shields should be
grounded at a common point so as to eliminate ground loops.

• Radiation from the abrupt cessation of electric current during
the switching off or control of heavy machinery.

• Radiation from AC circuits such as power lines, rectifiers, etc.
• Lightning.

Noise from the above generally occurs at low frequencies. Noise can
also occur at radio frequencies (RF). RF noise can arise from:

• Transmitters (two-way radios, cell phones, radar
installations, etc.).

• Electronic devices working at high frequencies.
A third source of noise, or even damage, is electrostatic discharge.
This is very prominent in dry weather and depends on the material used
for the equipment and furnishing the surroundings.

Types of environmental noise

Reduction of environmental noise

2633.4 Noise

rms values
usually used

n

S
10db V

V
log20SNR =

A measure of the relative magnitude of the noise is usually given by the
signal-to-noise ratio, or SNR (often expressed in dB).

3.4.3 Signal-to-noise ratio

in

Is

I

t

The signal-to-noise ratio is
the ratio of the signal power
over the noise power.

n

s
10db

n

s

P
P

log10SNR

P
P

SNR

=

=

The larger the SNR the better.

Power is proportional to I2 (or V2), hence:

Noise is always present in the original signal and may be amplified and
new noise added by the instrumentation amplifier itself. The degradation of
SNR from the input to the output of an amplifier is called the “Noise
Figure” NF. An NF of less than about 3 dB is considered good.

o

s
SNR
SNR

NF =

Signal

Amplifier output

Noise in a transistor (such as a BC109 PNP BJT) arises from thermal noise
from the resistance of the semiconductor itself and shot noise from the
passage of charge carriers across the pn junctions. Flicker noise is also
present and is due to the randomness of the diffusion process of carriers.
Flicker noise, being 1/f dependent, is the main source of noise at low
frequencies (<1 kHz) in a transistor. In an FET, shot noise is not so
important since the pn junction is in reverse bias and the gate current is very
small.

Newnes Interfacing Companion264

ν

η
∆=

∆=

h
P

fe2

feI2i

s2

s
2

n

3.4.4 Optical detectors

Consider the factors that affect the rate of electron production
within an optical detector:

ν

η=

h
P

r s
r rate of electron production (electrons/second)
η quantum efficiency
h Planck’s constant (6.63 × 10-34)
ν Frequency in Hz
Ps Incident power (i.e. the signal)

Now, the resulting signal current Is is simply:

ν

η=

=

h
eP

reI

s

s e charge on electron

The noise current is found from:

The signal to noise ratio is thus:

η

∆ν
=

∆ν

η
=

=
η∆

ν

ν
η=

fh2P

fh2
P

P
P

P
P

Pfe2
h

h
PseSNR

mins

s

n

s

n

s

s
222

22
2 2

n

2
s

2

i
I

SNR

RIP

=∴

=

Note:

NEPsignal limited
(proportional to ∆f)

The minimum detectable signal
occurs when SNR = 1, that is, when
Psmin = Pn. This is called the Noise
Equivalent Power NEPsignal limited.

If the background radiation noise power Pb is >> than signal power Ps, then
the signal is background limited and the SNR becomes:

()

η

∆ν
=

∆ν

η
=

∆ν+

η
==

fh2P
P

fh2P
P

fh2PP
P

P
P

SNR

b
mins

b

2
s

bs

2
s

n

s

This is the NEP background limited
(proportional to)f∆

This is noise from
“internal” sources
in the detector

This is noise from
background
radiation which is
incident on the
detector along
with the signal.

∆f is called the bandwidth.

2653.4 Noise

3.4.5 Lock-in amplifier

The lock-in amplifier uses a phase detection circuit where the amplitude
of the output signal is proportional to the amplitude of the input signal and
proportional to the cosine of the phase difference between the input signal
and a reference signal – the input signal and reference signal must have the
same frequency.

The phase detector produces an output signal which follows variations in
the amplitude of the input signal (if the frequency of the input and
reference signals are the same – which is ensured by having the reference
signal also operate the chopper) and where the phase of the reference
signal is the same as that of the signal.

For example, a particular input signal could consist of a
slowly varying DC voltage (e.g. thermocouple output). By
“chopping” the signal the DC output is converted into a
square wave of known frequency.

Phase
detector

Low pass
filter

Phase
shifter

Chopper

Signal +
noise

Signal +
noise
chopped

amp

Reference signal

The phase shifter is adjusted like a
tuner to give a maximum in the
output signal. Noise in the signal is
rejected since only those
components of the signals which
have a matching phase with the
reference are passed by the phase
detector.

The lock-in amplifier thus requires a reference signal, and a periodic input
signal. A slowly varying input signal, which contains noise, can be made
periodic, or repetitive, by chopping.

Newnes Interfacing Companion266

3.4.6 Correlation

This technique can be performed electronically or numerically on the
recorded data. The signal of interest must be repetitive. There are two
general types of correlation:

• cross-correlation
• auto-correlation

Both methods employ a reference signal (the auto-correlation uses the
sample signal, shifted in time, as the reference). During a time period, the
reference signal is delayed by a delay τ. The sample signal and the delayed
reference signal are multiplied together and then added. The reference is
shifted again and multiplied and added to the original signal, and so on
until a complete period has been correlated.

() ()dttVtV
T
1V ref

T

T
inout τ−= ∫

−

Mathematically, the correlated output Vout is given by:

where for auto-correlation, Vref = Vin.

Auto-correlation allows us to indirectly obtain information about the
frequencies present in a signal but not necessarily the waveform of that
component. Cross-correlation gives information about the waveform of the
signal of interest.

Delay circuit

Amplifier

Multiplier Integrator

Input
signal

Output
signal

2673.4 Noise

3.4.7 Review questions
1. Calculate the open circuit rms noise voltage over the frequency range

0–1 MHz between the terminals of a 100 kΩ resistor at a temperature of
27 oC. Also calculate the available noise power from this resistor.

2. A transducer of resistance 1 MΩ delivers a signal current of 10 µA to an
amplifier which has an input resistance of 10 MΩ and an bandwidth of
10 kHz. Calculate the temperature to which the transducer must be
cooled to achieve an SNR less than 130 dB.

3. A photodiode provides a signal current of 100 nA under a constant level
of illumination. What is the rms shot noise current in the diode over a
bandwidth of 100 kHz?

4. A signal of interest occurs at a frequency of 300 Hz and provides a
voltage at the transducer output of 100 mV. A combination of thermal
and flicker noise is present which is approximately described by:

()
f
bafV += volts/Hz

5. An optical detector is required to have 15 dB signal to noise power
ratio. The noise equivalent power (NEP) is background limited.

 ν
=

=∆=

kT
h

T
P

dt
dP

PP mins power resolution

from Planck’s equation

(c) Express ∆P/PB in terms of PB, v and ∆f. Hence find an
expression for PB in terms of ∆f.

(d) Calculate the product of detector aperture area A and the bandpass
∆ν required for ∆f = 5 MHz for a field of
view of solid angle Ω = 10-6 Sr given that: v

c
eh2AfP 2

kT/h3
∆

νΩ
=∆

ν−

(e) Estimate the aperture A required of
the detector for ∆ν = 1012 Hz.

(a) Calculate the power ratio Ps/Pn. Given that the response of the
detector is limited by the background noise, what is the
minimum detectable power expressed in terms of the NEP.

(b) Find the ratio of the minimum detectable power Psmin to the
background power PB at 300 K and λ = 8 µm if a temperature
resolution of ∆T = 0.05 oC is required.

36 100.4b;105.2a −−

×=×=

(Ans: 0.04 mV, 4.14 × 10−15 W)

(Ans: −73 °C)

(Ans: 5.66 × 10−11 A)

(Ans: 35 db)

(Ans: 31.6 NEP, 0.001, 5 × 10-14, 0.128 m2)

Calculate the SNR if the output is filtered to within 250–350 Hz.

Newnes Interfacing Companion268

269

The difference between the two is that
for the FIR, the output of the filter
decays to zero for an impulse input.
The output of an FIR filter depends on
the present,and previous inputs (the
filter is non-recursive). The output
from an IIR filter employs a feedback
mechanism so that the output depends
upon past outputs as well as past and
present inputs (i.e. recursive).

3.5.1 Digital filters

There are two approaches to digital filtering. The data itself may be
operated upon using a filter algorithm with the desired transfer function,
or, the frequency spectrum of the data may be obtained using Fourier
analysis, selected frequencies discarded, and then the filtered sequence
recomputed from the modified spectrum. The second method is described
in some detail in this chapter.

Digital filters fall into two basic categories: Infinite Impulse Response
(IIR) or Finite Impulse Response (FIR). These terms describe the time
domain characteristics of the filter when presented with an impulse signal
as an input.

0 0 0 1 0 0 0 0

Impulse input d(i)

If a continuous signal y(t) is sampled N times at equal time intervals ∆t,
then the resulting digitised signal includes the information of interest plus
any noise that might have been present in the original signal.
The purpose of a digital filter is to take this set if data, perform
mathematical operations on it, and produce another set of data possessing
certain desirable properties (such as reduced noise).

Digital filter
(transfer
function
H(ω))

IIR feedback path

The feedback associated with the
IIR filter presents an input to the
filter even when the external input
drops to zero. The output never
reaches zero. It may decrease,
oscillate, or even become unstable
and increase without limit. IIR filters
are usually more computationally
efficient than their FIR
counterparts.

Impulse response h(i)

FIR

i

IIR
i

Newnes Interfacing Companion270

() []

() () ()∫∫∫

∑

ω=ω==

ω+ω+=

∞

=

ooo T

0
o

o
n

T

0
o

o
n

T

0o
o

1n
onono

dttnsintf
T
2B;dttncostf

T
2A;dttf

T
1A

tnsinBtncosAAtf

3.5.2 Fourier series

The Fourier series gives amplitudes and frequencies of the component
sine waves for any periodic function f(t). For periodic functions of period
To with frequency ωo, the Fourier series can be written:

Using Euler’s formula, it can be shown that any cosine (or sine) function
can be represented by a pair of exponential functions:

() dtetf
T
1C

eC)t(f

o

o

o

T

0

tnj

o
n

n

tnj
n

∫

∑

ω−

∞

−∞=

ω

=

=

“DC” term
or average
value of f(t)

Amplitude terms for component
frequency nωo

()

() jBA
2
1

 jBA
2
1C

nn

nnn

+=

−=

Note: Cn is a complex
number, the real part
contains the amplitude
of the cos terms, and
the imaginary part the
amplitude of the sin
terms.

[] []tjtjtjtj ee
2
1jtsin;ee

2
1tcos ω−ωω−ω

−−=ω+=ω

Substituting into the Fourier series we obtain:

n > 0

n < 0

with

A plot of Cn vs frequency is a frequency spectrum of the signal. For
example, if f(t) =A cos ω

ο
t, then the frequency spectrum is a pair of lines

of height A/2 located at ±ω
ο
.

Negative frequencies arise from
the representation of sinusoidal
signals by a pair of exponential
functions. There is no “DC” term
since the average value of the
function is zero.ω

Cn

ωo−ωo

A/2

This plot is the magnitude of the exponential components of the signal. A
frequency spectrum using trigonometric coefficients would be a single line
of height A at ωo.

ω
ο

ω

An
A

2713.5 Digital signal processing

3.5.3 Fourier transform

The function F(ω) is called the Fourier transform of f(t) and is written
F[f(t)]. The Fourier transform is a continuous function of ω.

F(ω) = F[f(t)]

ωIndicates possible
high frequency noise
in the original signal

The function f(t) is often termed the inverse
Fourier transform of F(ω): ()[]ω=

− FF)t(f 1

Non-periodic functions are functions with an infinite period, i.e. To → ∞
and ωo → 0. The component frequencies can no longer be represented as
discrete spectral lines, but take on an
infinitely continuous range of values.
Now, for the periodic case, we have:

() dtetf
T
1C

o

o

T

0

tnj

o
n ∫

ω−
=

As To → ∞, Cn → 0. That is, the amplitude of the spectral lines becomes
vanishingly small as the spectral lines merge into a continuum. But, the
integral is finite, hence, the product CnTo can be written:

() dtetfTC tnj
on o∫

∞

∞−

ω−
= The product nωo becomes the

continuous variable ω, hence:

()

()ω=

= ∫
∞

∞−

ω−

F

dtetfTC tj
on

∑
∞

−∞=

ω
=

n

tnj
n oeC)t(fNow, going back to the periodic case,

or: ()
()ω

π

ω

=

ω

= F
2T

FC o

o
n

and replacing nωo with the continuous
variable ω, we obtain:

() () ωω

π

=ω

π

ω

=
ω

∞

∞−

∞

−∞=

ω

∫∑ deF
2
1eF

2
)t(f tj

n

tjo
ωo → 0

Fourier
integral

Because of the continuous nature of ω, the
amplitude of the frequency component of the
signal at any one particular frequency
approaches zero. F(ω) is really a frequency
density function: ()

o
non

2CTCF
ω

π

==ω

Thus, it is more appropriate to say that the
frequency spectrum of a signal has an amplitude
of say 5 V per rad at a particular value of ω.

Newnes Interfacing Companion272

Thus, we can say that the continuous frequency spectrum of a non-periodic
signal can be completely specified by a set of regularly spaced frequencies
a minimum of ∆ω = 2π/To radians/sec apart. That is, for the purposes of
analysis, we say that a non-periodic signal of finite length is periodic with
a period equal to the length of the signal. The component frequencies
consist of equally spaced intervals:

How many component frequencies are required to represent the data? Well,
the spectrum of a digital signal is always periodic with the same set of
frequencies repeating over and over with a frequency period of 2π/∆t. If
we sample at intervals of ∆ω = 2π/N∆t, then the total number of
frequencies per period is just

NtN
2

T
2 s

o

ω
=

∆

π
=

π
=ω∆

3.5.4 Sampling

If a continuous signal y(t) is sampled N times at equal time intervals ∆t,
then the sampling frequency is: .t2s ∆π=ω

Now, a non-periodic sample sequence of finite length N sampled over a
time To can be considered to be periodic, for the purposes of analysis, with
a period To. For a periodic signal, the frequency spectrum of the signal
consists of lines spaced ωo = 2π/To apart where ωo is the fundamental
frequency of the signal.

sk N
k

tN
k2

ω=
∆

π
=ω where k goes from 0 to N − 1

The frequency resolution ∆ω is ωs/N. The greater the value for N, the
finer the resolution of the frequency bins or channels used to represent the
original signal.

The digital signal has a duration To = N∆t.

The frequency components contained within the N data points are:

y

t

∆t

y(t)
To

The data is equally
spaced so that the
ith measurement is
at time iDt.

N
2

tN
t

2
=

π

∆

∆

π

2733.5 Digital signal processing

Now, in general, F(ω) is given by the integral:

We can approximate this to a finite
sum as:

() () () tetiyF
1N

0i

tij
i ∆∆=ω ∑

−

=

∆ω−

where N is the total number of equally
spaced data points and yi(i∆t) is the actual
data at i recorded at time i∆t. But, ω in this
formula is a continuous variable; however,
for a discrete number of samples:

tN
k2

k
∆

π
=ω

() () dtetfF tj
∫
∞

∞−

ω−
=ω

Further, recalling that F(ω) is actually
a frequency density function, we can
thus write the actual amplitude
spectrum of the signal as:

()
()

()kC

etiy
t

F 1N

0i

Nki2j
i

k

=

∆=
∆

ω

∑
−

=

π−

3.5.5 Discrete Fourier transform

where k goes
from 0 to N − 1

Each value of C(k) is a complex number of the form A − Bj.
The complete array of N complex numbers comprising this
series is called a discrete Fourier transform or DFT. Note
that C(k) is periodic (with period 2π/∆t). If we perform the
sum past k = N − 1, we get the same set of frequency
components again and again.

In terms of sines and cosines, we have:

() ()∑
−

=

 π
−

π
∆=

1N

0i
i N

ik2sinj
N
ik2costiykC

This formula can be
easily implemented in
software

Fast Fourier transform FFT
Computation of the DFT is time
consuming, requiring in the
order of N2 floating-point
multiplications. However, many
of the multiplications are
repeated as i and k vary. The
FFT is a collection of routines
which are designed to reduce
the amount of redundant
calculations. Each different
implementation of the FFT
contains different features and
advantages. Most pre-written
computer subroutines employ
some sort of FFT routine to find
a DFT of a series of samples.
The algorithm used in some
computer languages is known
as the “split-radix” algorithm
and requires approximately
N log2 N operations.

Newnes Interfacing Companion274

3.5.6 Filtering

Consider a signal yin(t) which
contains high frequency noise:
yin(t)

t

The signal can be represented by a
Fourier integral:

Fourier transform in
ω-domain

The high frequency noise would
lead to an increase in F[yin(t)] at
high frequencies. If it were possible
to separate out the signal of interest
ys from the noise yn, F[y(t)] for
each would be something like:
F[y (t)]

ω

F[yn(t)]
F[ys(t)]

Now, consider the transfer function
H(ω) = yout/yin of an ideal low pass
filter in the ω-domain.

If this function H(ω) were multiplied
with the Fourier transform of yin, then
the amplitude of all components of the
Fourier transform above ωo would be
reduced to zero thus eliminating (or at
least reducing) the high frequency
noise component of the signal.

ω

)(H ω

H(ω) = 1 at ω < ωc
and 0 at ω > ωc

ωo

100%

F[yin(t)]

ω

ωo

After filter

Good
representation
of ys due to
filtering.

yout(t)

t

The resulting Fourier series or integral
(using the modified transform as the
amplitude coefficients) then represents
the filtered signal in which noise is
reduced.

() ωω= ∫
∞

∞−

ω deV)t(y tj
inin

F[yin(t)] = yin(ω)

ω

F[yin(t)]

F[ys(t)]
Signal of
interest

2753.5 Digital signal processing

3.5.7 Digital filtering (ω-domain)
For a given input signal yin(t), the filtered signal yout(t) is obtained from the
inverse Fourier transform of the product H(ω)F(ω).

() ()

() ()

()

c

c

ω>ω=

ω≤ω=ω

=ω

ωωω
π

=

∫

∫

∞

∞−

ω−

∞

∞−

ω

0
1H

dtetyF

deFH
2
1)t(y

tj
in

tj
out

()
()

()kC

etiy
t

F 1N

0i

Nki2j
i

k

=

∆=
∆

ω

∑
−

=

π−
where k goes
from 0 to N − 1

The discrete Fourier transform of yi is:

The inverse transform is found from:

() () () Nki2j
1N

0k

tij
ki ekC

N
1deF

2
1tiy π

−

=

∆ω

∞

∞−

∑∫ =ωω
π

=∆

Thus, the filtered sequence is given by:

() () Nki2j
1N

0k
kout ekCH

N
1)i(y π

−

=

∑ ω=

As written here, yout(i) is an array of complex numbers containing both phase and
magnitude information. The magnitudes may be obtained by taking the square root of
the sum of the squares of the real and imaginary values.

For an array of discrete samples,
we must replace the continuous
variable ω with:

tN
k2

k
∆

π
=ω

sk N
k

tN
k2

ω=
∆

π
=ω

Now, since

Then the filter transfer
function can be
expressed in terms of
the parameter k/N
which goes from 0 to 1.

k/N

H(ωk)

0 1

Note: The product H(ω)C(k)
involves complex numbers.

() ()[]Nki2sinjNki2coskC
N
1tiy

1N

0k
i π+π=∆ ∑

−

=

or

Note: The DFT and inverse
DFT allow for processing of
complex signals (such as that
in an AC circuit). If the data
sampled is real, the imaginary
terms in the reconstituted
signal from the inverse
transform reduce to zero.

complex numbers

Newnes Interfacing Companion276

ω

)(H ω

ωc

1

3.5.8 Convolution

The filter transfer function H in the
ω− or s-domains is in fact a Fourier
transform! Although it does not show
the amplitude of the component sine
and cosine functions of a particular
signal, it does show the amplitude of
the ratio yout/yin against frequency for
the filter circuit.
For a given input signal yin(t), the filtered signal yout(t) is obtained by the
Fourier integral given by:

() ()

() ()

()

c

c

ω>ω=

ω≤ω=ω

π

=ω

ωωω=

∫

∫
∞

∞−

ω−

∞

∞−

ω

0
1H

dtety
2
1F

deFH)t(y

tj
in

tj
out

yout(t) is the inverse Fourier transform
of the product H(ω)F(ω).

[]

[] () ()
[] [])t(hF)t(yF

HF)t(h*)t(yF

de)t(h*)t(yF)t(y

in

in

tj
inout

=

ωω=

ω= ∫
∞

∞−

ω

convolution

A convolution is a special type of
superposition in the time domain. It is
a weighted sum of products of two
signals. It is equivalent to a
multiplication in the frequency domain.

Modulation is another type of
superposition. Consider the
formula:

The frequency term is modulated
by the amplitude term which may
change as a function of time. This
is called amplitude modulation.
Modulation is a multiplication of two
signals in the time domain. A
multiplication in the time domain is
equivalent to a convolution in the
frequency domain.

tjAe)t(y ω
=

Digital filtering can be done in
either the time (using convolutions)
or frequency (using Fourier
transforms) domains.

If the functions h(t) and yin(t) are the original functions in the time domain,
we say that the output signal yout(t) is the convolution of these two
functions.

2773.5 Digital signal processing

3.5.9 Discrete convolution

In general, a discrete convolution between two
arrays of discrete samples yin(i) and h(i) is given
by:

() () ()xnhxyny
n

0x
inout −=∑

=

A digital signal can
be thought of as a
summation of a
series of impulses,
each offset by a
sampling interval.

Digital signal is sum
of shifted impulses

Let the impulse
response of a particular
digital filter be
represented by h(i):

To find the convolution of y(i) and h(i) we multiply the individual impulse
with the impulse response function suitably shifted so as to align with the
impulse. Then, all these are added together to obtain the final filtered digital
signal.

y(i)*h(i)

2

1

−1

1

i

h(i)

y(i)

i = 1

1

2

1

i = 2

1

2

1

i = 3

1

2

1

i = 4

1

2

1

2

4

2

1

2

1

−1

−2

−1

1

2

1

i

x

x

x

x

+

+

+

0 0 0 2 5 3 0 1 1 0

0 0 0 2 1 −1 1 0

n goes from 0 to (Ny+Nh − 1). Arrays are numbered
from 0 to N − 1 and contain N elements.

Newnes Interfacing Companion278

A simple (non-recursive) difference equation which performs a five point
weighted averaging is:

3.5.10 Digital filtering (t-domain)

The time domain approach is often used in digital filtering in preference to
the ω-domain approach. There are several methods of approximating the
desired ideal filter transfer function. The transfer functions of two popular
low pass methods are shown:

Ideal Butterworth

ChebyshevH(ω)

ωc

A computer program can be
used to calculate the
following sum to obtain the
filtered value of yi.

−= ∑∑

−

=

−

−

=

−

1M

1k
kik

1N

0j
jij

o
i ybxa

b
1y

N is the number of forward coefficients (aj) and
M the number of reverse coefficients (bk).

() ()2i2i21i1i1ioi yyayyayaŷ
−+−+

++++=

The actual filtering function is an equation (called a difference equation)
which gives the smoothed value of yi in terms of the actual value of yi and
various weighted combinations of previous and future values of y.

The procedure for finding the form of the difference equation and the
values of the coefficients for a particular digital filter is for an advanced
course in DSP although we will look at a simple example next.

The impulse response of a particular difference equation is found by
setting yi to 1 when i = 0 and yi to 0 otherwise. For example:

() ()
() ()
() () 321o2

121o1

o21o0

a10a00a0aŷ
a00a10a0aŷ
a00a00a1aŷ

=++++=

=++++=

=++++=

2793.5 Digital signal processing

3.5.11 Example

Let the measured value yi at i∆t be expressed as a sum of two sine waves
(plus a DC term if needed @k = 0) making N = 3.

Measured
data

Sine wave
#1

Sine wave
#2

yi

t

∆t

Note: The data is equally spaced so that
the ith measurement is at time i∆t.

Consider a set of measurements of a quantity y taken at equal time
intervals ∆t (a sampling frequency of 1/f).

We require an equation which gives the best estimated values of yi at
any particular value of i. That is, a smoothing equation.

Let the smoothed value of yi at each data point be given by the formula:
() ()2i2i21i1i1ioi yyayyayaŷ

−+−+
++++=

This is a five point smoothing equation (the difference equation).

Non-recursive moving average filter

() () Nki2j
2

0k
i eF

3
1tiy π

=

∑ ω=∆

Newnes Interfacing Companion280

()
() ()

() ()

()

() []

() ()∑

∑

∑

∑

=

π

=

π

=

π−π

π−π

π

=

−π+π

−π+ππ

ωω=

π+π+ω=

+

+++
ω=

+

+++
ω=

2

0k

Nki2j
kk

2

0k
21o

Nki2j
k

2

0k
Nk2j2tNk2j2

2

Nk2jNk2j
1oNki2j

k

2

0k
Nk2i2jNk2i2j

2

Nk1i2jNk1i2j
1

Nki2j
o

ki

eHF

Nk4cosa2Nk2cosa2aeF

eea

eeaa
eF

eea

eeaea
Fŷ

yi are the actual data points and yi are the smoothed or fitted data points.
The constants ao, a1 and a2 are to be chosen so as to smooth any noise from
the actual data. Contributions to the smoothed value of a particular data
point come from the actual data and four neighbouring data points yi+1, yi-

1, yi+2 and yi-2 making a five point smoothing formula. Now, each of the
measured data points yi can be calculated from the summation of the sine
waves #1 and #2 evaluated at n = i. Substituting gives:

∧

3.5.12 Smoothing transfer function

tcos2ee tjtj
ω=+

ω−ωbut

H(ω) is a filter transfer function. Note that the form of F(ω) need not be
known precisely since once the coefficients ao, a1 and a2 have been
decided, we can obtain yi from the difference equation. If it is known that
the original data contains say high frequency noise, then values for the
smoothing coefficients are selected such that H(ω) has the form of a low
pass filter. The coefficients ao, a1 and a2 are found by simultaneous
equations of data points taken directly from the desired transfer function.
Three coefficients require three such data points (H(ω),k) to be used in the
transfer function to obtain values of ao, a1 and a2. These values are then
used in the difference equation to give the fitted values of yi at the desired
value of i.

() ()2i2i21i1i1ioi yyayyayaŷ
−+−+

++++=
Difference
equation

^

N
k2tk

π
=∆ωwhere

2813.5 Digital signal processing

3.5.13 Review questions

1. Determine the real and imaginary parts of the DFT coefficients of the
following “real” digital signals:
(a) 1, 2, 3, 1, 2, 3
(b) 0, 1, 1, 0

2. The data shows the average daily temperature in oC for each month of
a year in Sydney, Australia.
(a) Calculate the Fourier coefficients An,

Bn for the following data for all the
required values of k.

(b) Draw a histogram of the data.
(b) Draw a frequency spectrum.
(c) Perform an inverse DFT to check your

results of (a).

Jan 25
Feb 23
Mar 22
Apr 20
May 19
Jun 18
Jul 17
Aug 17
Sep 19
Oct 22
Nov 23
Dec 25

3. Using the method of a digital convolution, find
yout(i) = y(i)*h(i) for the following number
sequences:

y(i) = 1, 3, 2, −1, 4
h(i) = 2, −1, 3

() () ()kihiyiy
1N

0k
inout −=∑

−

=

4. Design a seven point smoothing formula of the form:

which corresponds to a transfer function H(ωk) approximating to
the shape shown. Plot the actual transfer function calculated.

1

0.5

0.5 1

H(ωk)

k/N

()
() ()3i3i32i2i2

1i1i1ioi
yyayya

yyayaŷ

−+−+

−+

++++

++=

Hint: Take H(0) = 0; H(1) = 1; H(0.5) = 0.5, H(0.8) = 1

(Ans: 2, 5, 4, 5, 15, −7, 12)

Newnes Interfacing Companion282

A temperature measurement system consists of a thermocouple connected
to a difference amplifier, the output of which is fed into an ADC and then
stored as an array of equally spaced readings on a microcomputer.
Samples are taken every 5 seconds. Design a digital filter (in the language
of your choice) which smoothes out any high frequency noise from this
data. The smoothed data is to retain fluctuations which occur over a time
greater than about a minute.

Thermocouple

Amplifier

ADC

Serial port

Data yi
Digital
Filter Data yi

^

DAC

Output
display

Computer

3.5.14 Activities

2833.5 Digital signal processing

Newnes Interfacing Companion284

285

Index

Newnes Interfacing Companion286

2’s complement 78
2nd order 244
2nd order active filter 234
3 dB point 238
80X86 CPU development 97
8250 UART 140
8421 code 81

A to D and D to A conversions 147
abort 103
above the gold point 17
absolute address 91
absorbed 25
AC 57
acceleration 59
acceleration and vibration 59
accumulator 98
accuracy 12
actinometric definition 36
actinometry 35
action 187
active filters 227
active filters – op-amp circuit 228
active integrator/differentiator 231
activities 28, 87, 108, 126, 224, 244,

257, 283
actuator 4
actuators 184
ADC 148, 153, 154
ADC08xx chip 156
address 89, 90, 92
address data 90, 92
addressing 120
aliasing 149
aligned 92
ALU 97
ambient light 51
amplification 43
amplitude spectrum 274
analog to digital converter 148, 152
analog to digital converters 152
AND 84
angular displacement 48
angular velocity transducer 50
aperture error 155
API 161
architecture 89
arcing 46

arithmetic logic unit 97
ASCII 74
ASCII code 83
assembler 113, 127
assembler directives 115, 116
assembly language 111, 113, 201
assembly language instructions 115
assembly language program structure

115
assembly language shell program 118
asynchronous 165
atmospheric pressure 61
avalanche photodiodes 41

band reject 236
bandpass 236
bandpass filter 245
bandpass filter – narrow 236
bandpass filter – wide 240
bandwidth 151, 265
base 98
base address 90, 138
base pointer 99
based addressing 122
based index 123
BASIC 205
basic input/output services 101
baud 167
baud rate 141
baud rate divider 171
BCD 81
bernoulli’s equation 68
bi-directional 89
binary coded decimal 81
binary coded decimal (BCD) 81
binary number system 74, 84
binary to decimal 75
BIOS 101, 102
BIOS interrupts 124
BIOS service routines 145
BIOS services 174, 202
bit 74
block 104, 136
bolometer 38
Boolean algebra 84
bounce 46
Bourdon gauge 63
branching 114, 119

287Index

brightness 37
buffers 93, 137
bus 89, 178
bus-mastering DMA 136, 161
bus address 179
bus master 136
byte 74, 77
byte to serial conversion 165

candela 36, 37
capacitance 25, 69
capacitive transducer 48
capacitor 65
carbon button 65
carrier 166
carry 80, 85
Celsius temperature scale 16
central processing unit 97
centroid 51
centronics 143
channels 136, 273
charge 57
charge amplifier 58
charge coupled device 41
chip-select 93
chopping 266
circuit construction 195
classes of operations 112
clock 94, 141
clocked flip-flop 95
CMRR 247
CMRR cross-coupled inputs 251
code segment 98, 114, 117
coils 186
cold junction compensation 23
Colpitts oscillator 171
comments 115
common mode rejection ratio 248
communications 164
complement 78
complementary currents 160
complex numbers 215
computer 283
computer architecture 88, 89
computer interface 60
computer interfacing 2, 72, 212
condenser 65
condition code 119
conditional 119
contact 18

contact potential 22, 23
contacts 186
control bus 89
control statements 119
controlled variable 4
controller 178
conversion time 153, 154, 155, 156
convert from decimal to hex 77
convert from hex to binary 77
convert from hex to decimal 77
convolution 277
core 49
correction signal 11
correlated 267
correlation 266
count 98
counter 186
CPU 89, 97
critically damped 234
cross-correlation 267
crystal oscillator 171
cutoff 238

DAC 148
DAC0800 160
dashpot 13, 59
data 89, 92, 98
data acquisition board 161
data acquisition project 192
data acquisition system 33
data bus 89
data communications 163
data packet 179, 180
data registers 98
data segment 98
data transfer rate 177
DC 57
DCE 166
debounce 46
debug 126
decibel 241
decimal 76
decimal to binary conversion 75
decimal to hex conversion 77
decoding circuitry 93
deflection method 5
depletion region 40
derivative 11
descriptor tables 105
detectivity 6

Newnes Interfacing Companion288

device driver 106
dielectric 48
difference amplifier 247, 257
difference amplifier with cross-coupled

inputs 250
difference amplifier with voltage

follower inputs 249
difference equation 279, 280
different types of pressure 64
differential equations 216
differential operator 216, 219
differential pressure 66
differential pressure level 69
differentiator 218, 231
differentiator – passive 221
differentiator transfer function 237
digital filtering (ω-domain) 276
digital filtering (t-domain) 277
digital filters 270
digital logic circuits 85
digital signal processing 269
digital to analog conversion 159
digital to analog converter 148
digital to analog system 208
diode 253
diode array 51
direct indexing 123
direct memory access 106, 133, 136
direct memory addressing 121
disappearing filament 21
discharge coefficient 66
discrete convolution 278
discrete Fourier transform 274, 276
discrete samples 276
displacement 123
dissimilar metals 22
DMA 96
domain name server 181
doppler shift 67
double integrator 235
double words 92
drag-torque tachometer 50
driving frequency 49
dry bulb 25
DTE 166
dual slope 153
dynamic 4
dynamic response 10
dynode 43

eddy currents 50
effective address 121
electrostatic discharge 263
email 181
EMI 263
enumeration 180
environmental noise 263
error 8, 11
ethernet 181
Euler’s formula 271
EXE 118
execution time 185
extended ASCII 83
extra segment 98

Fahrenheit temperature scale 16
fast Fourier transform 274
fault 103
feedback transistor 253
fetch 114
filtering 275
filters 228
finite impulse response 270
firewire 180
first party 136
fixed points 16
flag register 119
flags 99
flicker noise 262, 264
flip-flop 95
float 68, 69
flow 66
follower inputs 257
force 57, 65
Fourier analysis 9, 270
Fourier integral 275
Fourier series 271
Fourier transform 272
frequency 39
frequency domain 217
frequency resolution 273
fsd 8
fuel level sensor 47
full scale deflection (fsd) 7
functional components 186
fundamental interval 19
furnace 27

289Index

gain 233, 250
general transfer function 232
GPIB 164, 178
gray code 82

half adder 85
handshake packet 179
handshaking 176
hardware 23
hardware device interrupt number 135
hardware handshaking 176
hardware interrupts 102, 103
hex 76
hexadecimal 76
high pass 229
high pass filter 239
high voltage 46
hub 179
hysteresis 8

I/O 89
ice point 17
IEEE 1284 145
IEEE 1394 180
IEEE 488 178
IER 140
IF flag 103
IIR 270
IIR 140
illuminance 36, 37
immediate addressing 120
impedance matching 214
impulse response 279
indexed memory addressing 123
indirect addressing 122
indirect memory addressing 122
industrial pressure measurement 64
industrial thermometers 18
infinite impulse response 270
input/output (I/O) 96
input/output ports 133
input port 132
input response time 185
inputs 184
instruction decoder 97, 114
instruction pointer 99, 114
instruction set 112
instructions 92
instrumentation 2, 72, 212, 214
instrumentation amplifier 246, 252

integral 11
integral transform 216
integrating 152
integrator 218, 231
integrator – passive 220
integrator transfer function 232
interface 72
interface card 164, 178
interfacing 131, 132, 148
interfacing in a multitasking

environment 134
interference 263
internal relay 189
international temperature scale 16
interpolate 52
interrupt function 124
interrupt handler 102
interrupt latency 135, 161
interrupt service routine 102, 124
interrupt vector table 103, 124
interrupts 102, 124, 133, 135
intrinsic noise 262
inverse Fourier transform 272
inverse transform 276
IP addresses 181
IRQ 135
ISA 96

kd 11
Kelvin 17
ki 11
kilobyte 74
kp 11

ladder logic diagrams 187, 188
ladder network 159
Laplace operator 217
Laplace transform 216, 217, 219
latch 94, 158, 186
latched 189
latches 94
laws of Boolean algebra 85
LCR 139
lead zirconate titanate 57
leakage 57
level 69
LIFO 100
light 34, 35
light dependent resistor (LDR) 39
line drivers 170

Newnes Interfacing Companion290

linear encoder 52
linearity 7
liquid-in-glass thermometer 20
list code 187, 188
listener 178
lock-in amplifier 266
log amplifier 253
logic continuity 187
logic gates 84, 85
logic instructions 184
logic states 84
long word 92
low pass 234
low pass filter 229
low pass filter – active 233
lsb 74
LSR 139
lumen 36
luminous flux 36
luminous intensity 36
lux 36, 37
LVDT 49

machine code 112
machine language 112
magnetic circuit 50
magnetic coupling 49
mandrel 47
mantissa 78
mark 167, 170
mass 60
mass balances 60
matching point 21
maths co-processor 78
MCR 139, 176, 202
measurement systems 3
measuring light 36
mechanical models 13
mechanical stressing 64
mechanical switch 46
megabyte 74
memory 89, 90
memory-mapped 89, 96, 132
memory addressing 121
memory data 92
memory map 104
metal foil 55
methods of measurement 5
microprocessor interrupts 102, 103
microprocessor unit (MPU/CPU) 97

mnemonic 115
modem 137, 166
modulation 65, 277
motion control 11, 52
MOV instruction 120
moving coil 65
msb 74, 80
MSR 139
multiplexing 89, 161
multiplication 80
mylar sheet 25

NAND 84
nanometre 49
negative numbers 79
noise 6, 215, 261
noise current 265
noise equivalent power 265
noise figure 264
noise floor 6
non-contact 18
non-linear 23, 24, 56
non-maskable interrupt 103
non-periodic 273
non-weighted 82
NOR 84
notch 236
null method 5
null modem 173, 180
number systems 73
Nyquist criterion 149

OBJ 118
octal latch 94
offset 90
offset registers 99
op-amp frequency response 254
opcodes 112
operands 115
operator 215, 218
operator notation 218
optical detectors 42, 265
OR 84
orifice plate 66
OSI Reference Model 181
OTG 180
output port 132
output response time 185
overdamped 234
oversampling ratio 151

291Index

packets 180, 181
parallel connection 178
parallel port 143
parallel port registers 144
parallel printer port 143
parallel printer port operation 145
parity 167
parity bit 83
parity error 167
passive filters – RLC circuits 228
PCI 96
permanent magnet 65
phase 49
phase changes 52
phasing error 185
photoconductivity 39
photodiode 40
photometric definitions 36
photometry 35
photomultiplier 43
photon flux 36
phototransistors 41
photovoltaic 40
physical phenomena 2, 72, 148, 212
PID 11
piezoelectric crystal 59, 64
piezoelectric force transducer 57
piezoelectric sensor instrumentation

58
piezoresistive 55, 64
piezoresistive strain gauge 57
PIN photodiode 41
platinum resistance thermometer 19
PLC 184
PLC specifications 190
plug and play 179, 180
polarity 170
polling 133, 134
popping 100
port 132
port address 132, 133, 137
port number 96, 133
port number I/O device 133
ports 96
position and motion 45
position sensitive detector 51
position sensitive diode array 51
positional resolution 51
positive displacement 67
positive numbers 79

potentiometric sensor 47
preamplifier 6, 214, 263
precision 12
pressure 63
pressure drop 66
pressure switch 63
printer port 145
printer port control register 144
printer port data register 144
printer port status register 144
priority 102, 103
privilege level 105
process control 4
process variables 4
processor exceptions 102
program counter 114
program execution 114
programmable 138
programmable interrupt controller 102,

135
programmable logic controllers 183,

184
programming 187, 201
psd 51
psychrometer 25
pulse extender 189
pushing 100
pyroelectric 38
pyrometers 21
PZT 58

quadrature signal 52
quantisation error 150
quantisation noise 150, 151
quantum efficiency 39
quartz 57
quartz crystal 58, 65

radar 69
radiant energy 36
radiant flux density 36
radiant intensity 36
radiant power or flux 36
radiation pyrometer 21
radiometric definitions 36
radiometry 35
random access memory 101
random error 12
range 7
read/write 89, 93

Newnes Interfacing Companion292

read/write operation 92
read only memory 101
real 105
real and protected mode CPU

operation 105
receiver 18
red filter 21
reference signal 267
reference voltage 153
register 120, 138
register addressing 120
register and immediate addressing 120
registers 90, 97, 98, 136, 186
rejection 230
relative humidity 25
relative offset 122
relocatable 113
request register 136
reset 95
resistances 55
resolution 6, 8, 150
resolution and quantisation noise 150
resonant frequency 10, 57
review questions 14, 26, 44, 53, 70,

86, 107, 125, 146, 162, 182, 191,
223, 242, 255, 268, 282

RF noise 263
rise time 10, 51
ROM 101
rosette 55
rotary encoder 52, 82
RS232 137, 166
RS232 interface 166
RS485 177
rungs 187

sample-and-hold 157, 161, 206
sample-and-hold control 158
sampling 273
sampling frequency 273
sampling rate 149
scan rate 161
scan time 185
scans 184
scatter 12
Schottky photodiodes 41
scientific notation 78
Seebeck effect 22
segment base address 91, 122
segment registers 98

segmented 90
segmented address 91
segmented memory 89, 91
segments 90
seismic mass 59
self-heating 19
semiconductor 24
sense leads 56
sensitivity 6, 7, 58
sensor 2, 72, 212
serial communications 60
serial data acquisition system 193
serial port 137, 164
serial port addresses 138
serial port baud rate 141
serial port BIOS services 174
serial port object 142
serial port operation 142
serial port operation in BASIC 175
serial port registers 139
serial port registers and interrupts 140
serial transmission 164
service routines 142
servicing 132
servo feedback loop 11
set point 4, 11
shared interrupt 135
shift 80
shift register 165
shot noise 262
shunt 56
sign bit 79
signal current 265
signal processing 2, 72, 212
signal-to-noise ratio 6, 151, 263
signed numbers 79
silicon diaphragm 64
silicon wafers 25
simple switch type 63
size codes 121
smoothing formula 281
smoothing transfer function 281
SNR 6
software 23
software interrupts 102, 124
sound 65
space 167, 170
span error 7
spectrophotometer 51
speed 132

293Index

springs 13
stack 100
stack pointer 99, 100
stack segment 98
staircase 152
standard observer 37
standard thermometers 17
standards of measurement 37
start-up routines 101
status register 114
step 10
step size 52
steradian 36
stop bits 167
strain gauge 55
strain gauge factor 55
subroutine 100
subtraction 80
subtraction and multiplication 80
successive approximation 152
switch 46
symbol 187
synchronisation 167
systematic error 12

T-network filters 229
talker 178
task register 105
TCP/IP 181
telnet 181
temperature 15, 16
temperature drop 67
thermal (Johnson) noise 262
thermal detectors 38
thermal expansion 55
thermal noise 264
thermistors 24
thermocouple 22
thermoelectric sensitivity 23
thermopile 38
Thomson effect 22
time-shared 106
time domain 217, 279
timer 186
timing 185
token packet 179, 180
toothed-rotor magnetic tachometer 50
total resistance 51
transducer 2, 4, 72, 212

transfer function 213, 214, 215
transfer impedance 222, 229
transforms 216
transmitter/receiver 170
transmitters 6
trap 103
tri-state 93, 177
true value 12
truth table 84, 95
TTL 84
turbine 67
turndown 67
twin-T filter 230, 245

UART 137, 165, 168
UART clock 171
UART master reset 172
ultrasonic level transducers 69
underdamped 234
unidirectional 89
unsigned integer 79
USB 179

vector interrupt 103
vena contracta 66
venturi 66
vibration 64, 59, 263
virtual 8086 mode 106
virtual device drivers 106
virtual memory space 105
VM flag 106
voltage amplifier 58
voltage amplitude 49
voltage differentials 177
voltage followers 247
voltage gain 241

weighted input 159
wet bulb 25
white 262
words 74, 92
work function 43
world wide web 181
XOR 84, 85
xray diffraction 51

zener diode 23
zero 6
zero offset 7

Further reading
R.M. Bertrand, “Programmable Controller Circuits ,” International Thomson
Publishing, 1995.
H.B. Boyle, D. Page, “Transducer Handbook: User's Directory of Electrical
Transducers,” Butterworth-Heinemann, 1999.
W. Buchanan, “Applied PC Interfacing: Graphics and Interrupts,” Addison
Wesley Longman, Inc., 1996.
F.M. Cady, "Microcontrollers and Microcomputers: Principles of software and
hardware engineering," Oxford University Press, 1997.
D. Crecraft, S. Gergely, “Analog Electronics Circuits, Systems and Signal
Processing,” Butterworth-Heinemann, 2002.
A.J. Diefenderfer, B.E. Holton, "Principles of Electronic Instrumentation," 3rd
Ed., International Thomson Publishing, 1994.
M. Elwenspoek, R. J. Wiegerink, “Mechanical Microsensors,” Springer-Verlag
NY, 2000.
D.R. Gillum, “Industrial Pressure, Level and Density Measurement,” ISA, 1995.
A.R. Hambley, "Electrical Engineering: Principles and Applications," Prentice-
Hall, Inc., 1997.
E.C. Ifeachor, B.W. Jervis, “Digital Signal Processing: A Practical Approach,”
2nd Ed., Pearson Education, 2002.
J.H. Johnson, "Build your own low-cost data acquisition system and display
devices," TAB Books, 1994.
M. Predko, “PC PhD: Inside PC Interfacing,” McGraw-Hill Professional, 1999.
W.H. Rigby, T. Dalby, “Computer Interfacing: A Practical Approach to Data
Acquisition and Control Lab Manual,” Simon & Schuster, 1995.
I.R. Sinclair, “Sensors and Transducers,” Butterworth-Heinemann, 2001.
G.A. Smith, “Computer Interfacing,” Butterworth-Heinemann, 2000.
M.H. Tooley, “PC-based Instrumentation and Control,” 3rd Ed., Butterworth-
Heinemann, 2002.
W.A. Triebel, "The 80386, 80486, and Pentium Processors: Hardware, Software
and Interfacing," Prentice-Hall, 1998.
M.J. Usher, D.A. Keating, "Sensors and Transducers," 2nd Ed., Macmillan
Press Ltd, 1996.
R.M. White, R. Doering, "Electrical Engineering Uncovered," Prentice-Hall,
1997.
I. Busch-Vishniac, “Electromechanical Sensors and Actuators,” Springer-Verlag,
NY, 1998.

Newnes Interfacing Companion294

Semiconductors
IC-CMOS/LSI UART CDP6402CE
IC-COMS 8-BIT A/D ADC0804LCN
IC-DUAL TRANSCEIVER MAX232CPE
IC-74 SERIES TTL DM7400N
IC-74HC SERIES CMOS MC74HC04AN
IC-74HC SERIES CMOS 74HC393N
IC-74 SERIES TTL DM7476N
IC-TEMPERATURE SENSOR LM335H
IC-8-BIT DAC DAC0800LCN
IC-SAMPLE AND HOLD LF398N
IC-SUPER GAIN OP AMP LM308H
IC-COMPENSATED OP AMP UA741CN
DIODE,ZENER 4V7 BZX284-C4V7/T1
CRYSTAL,4.915200 MHZ 4079WT-4M9152
IC-FET OP AMP LF356H

Parts lists for activities

Part 1
1 × LM335H precision temperature reference
1 × IN4732 4.8V zener diode
2 × 220k; 1 × 2.2k; 1 × 100 Ω; 1 × 4.7k; 1 × 680 Ω; 1 × 1K

Part 2
1 × ADC0804 A to D converter
1 × 6402 UART
1 × 7400 NAND
1 × 232CPE RS232 line driver
1 × 74HC04 hex inverter CMOS
1 × 74HC393 CMOS counter
1 × 4.9152 MHz crystal
2 × 33 pF; 1 × 147 pF (or 3 × 47 pF);
4 × 1 µF; 1 × 4.7 µF; 1 × 47 µF;
2 × 3.3k; 1 × 10M; 1 × 100k;
1 × 1k; 2 × 10k

1 × 7476 JK flip-flop
1 × LF398 sample and hold
1 × 0.01 µF capacitor

1 × DAC0800 D to A converter
2 × 4.7k; 2x 10k
1 × 0.01 µF; 2x 0.1 µF

Part 3
2 × LM308N operational amplifier
1 × 741 operational amplifier
2 × 100 pF
2 × 2.2k; 1 × 56 Ω; 2 × 470 Ω;
2 × 4.7k

295Parts lists

	Preface
	Part 1: Transducers
	1.0 Transducers
	1.1 Measurement systems
	1.1.1 Transducers
	1.1.2 Methods of measurement
	1.1.3 Sensitivity
	1.1.4 Zero, linearity and span
	1.1.5 Resolution, hysteresis and error
	1.1.6 Fourier analysis
	1.1.7 Dynamic response
	1.1.8 PID control
	1.1.9 Accuracy and repeatability
	1.1.10 Mechanical models
	1.1.11 Review questions

	1.2 Temperature
	1.2.1 Temperature
	1.2.2 Standard thermometers
	1.2.3 Industrial thermometers
	1.2.4 Platinum resistance thermometer
	1.2.5 Liquid-in-glass thermometer
	1.2.6 Radiation pyrometer
	1.2.7 Thermocouple
	1.2.8 Thermistors
	1.2.9 Relative humidity
	1.2.10 Review questions
	1.2.11 Activities

	1.3 Light
	1.3.1 Light
	1.3.2 Measuring light
	1.3.3 Standards of measurement
	1.3.4 Thermal detectors
	1.3.5 Light dependent resistor (LDR)
	1.3.6 Photodiode
	1.3.7 Other semiconductor photodetectors
	1.3.8 Optical detectors
	1.3.9 Photomultiplier
	1.3.10 Review questions

	1.4 Position and motion
	1.4.1 Mechanical switch
	1.4.2 Potentiometric sensor
	1.4.3 Capacitive transducer
	1.4.4 LVDT
	1.4.5 Angular velocity transducer
	1.4.6 Position sensitive diode array
	1.4.7 Motion control
	1.4.9 Review questions

	1.5 Force, pressure and flow
	1.5.1 Strain gauge
	1.5.2 Force
	1.5.3 Piezoelectric sensor instrumentation
	1.5.4 Acceleration and vibration
	1.5.5 Mass
	1.5.6 Atmospheric pressure
	1.5.7 Pressure
	1.5.8 Industrial pressure measurement
	1.5.9 Sound
	1.5.10 Flow
	1.5.11 Level
	1.5.12 Review questions

	Part 2: Interfacing
	2.0 Interfacing
	2.1 Number systems
	2.1.1 Binary number system
	2.1.2 Decimal to binary conversion
	2.1.3 Hexadecimal
	2.1.4 Decimal to hex conversion
	2.1.5 2’s complement
	2.1.6 Signed numbers
	2.1.7 Subtraction and multiplication
	2.1.8 Binary coded decimal (BCD)
	2.1.9 Gray code
	2.1.10 ASCII code
	2.1.11 Boolean algebra
	2.1.12 Digital logic circuits
	2.1.13 Review questions
	2.1.14 Activities

	2.2 Computer architecture
	2.2.1 Computer architecture
	2.2.2 Memory
	2.2.3 Segmented memory
	2.2.4 Memory data
	2.2.5 Buffers
	2.2.6 Latches
	2.2.7 Flip-flop
	2.2.8 Input/Output (I/O)
	2.2.9 Microprocessor unit (MPU/CPU)
	2.2.10 Registers
	2.2.11 ROM
	2.2.12 Interrupts
	2.2.13 Memory map
	2.2.14 Real and protected mode CPU operation
	2.2.15 Review questions
	2.2.16 Activities

	2.3 Assembly language
	2.3.1 Instruction set
	2.3.2 Assembly language
	2.3.3 Program execution
	2.3.4 Assembly language program structure
	2.3.5 Assembler directives
	2.3.6 Code segment
	2.3.7 Assembly language shell program
	2.3.8 Branching
	2.3.9 Register and immediate addressing
	2.3.10 Memory addressing
	2.3.11 Indirect memory addressing
	2.3.12 Indexed memory addressing
	2.3.14 Interrupts
	2.3.15 Review questions
	2.3.16 Activities

	2.4 Interfacing
	2.4.1 Interfacing
	2.4.2 Input/Output ports
	2.4.3 Polling
	2.4.4 Interrupts
	2.4.5 Direct memory access (DMA)
	2.4.6 Serial port
	2.4.7 Serial port addresses
	2.4.8 Serial port registers
	2.4.9 Serial port registers and interrupts
	2.4.10 Serial port baud rate
	2.4.11 Serial port operation
	2.4.12 Parallel printer port
	2.4.13 Parallel port registers
	2.4.14 Parallel printer port operation
	2.4.15 Review questions

	2.5 A to D and D to A conversions
	2.5.1 Interfacing
	2.5.2 The Nyquist criterion
	2.5.3 Resolution and quantisation noise
	2.5.4 Oversampling
	2.5.5 Analog to digital converters
	2.5.6 ADC (integrating method)
	2.5.7 ADC (successive approximation)
	2.5.8 Aperture error
	2.5.9 ADC08xx chip
	2.5.10 Sample-and-hold
	2.5.11 Sample-and-hold control
	2.5.12 Digital to analog conversion
	2.5.13 DAC0800
	2.5.14 Data acquisition board
	2.5.15 Review questions

	2.6 Data communications
	2.6.1 Communications
	2.6.2 Byte to serial conversion
	2.6.3 RS232 interface
	2.6.4 Synchronisation
	2.6.5 UART (6402)
	2.6.7 Line drivers
	2.6.8 UART clock
	2.6.9 UART Master Reset
	2.6.10 Null modem
	2.6.11 Serial port BIOS services
	2.6.12 Serial port operation in BASIC
	2.6.13 Hardware handshaking
	2.6.14 RS485
	2.6.15 GPIB
	2.6.16 USB
	2.6.17 TCP/IP
	2.6.18 Review questions

	2.7 Programmable logic controllers
	2.7.1 Programmable logic controllers
	2.7.2 Timing
	2.7.3 Functional components
	2.7.4 Programming
	2.7.5 Ladder logic diagrams
	2.7.6 PLC specifications
	2.7.7 Review questions

	2.8 Data acquisition project
	2.8.1 Serial data acquisition system
	2.8.2 Circuit construction
	2.8.3 Programming
	2.8.4 Sample-and-hold
	2.8.5 Digital to analog system

	Part 3: Signal processing
	3.0 Signal processing
	3.1 Transfer function
	3.1.1 Instrumentation
	3.1.2 Transfer function
	3.1.3 Transforms
	3.1.4 Laplace transform
	3.1.5 Operator notation
	3.1.6 Differential operator
	3.1.7 Integrator – passive
	3.1.8 Differentiator – passive
	3.1.9 Transfer impedance
	3.1.10 Review questions
	3.1.11 Activities

	3.2 Active filters
	3.2.1 Filters
	3.2.2 T -network filters
	3.2.3 Twin-T filter
	3.2.4 Active integrator/differentiator
	3.2.5 Integrator transfer function
	3.2.6 Low pass filter – active
	3.2.7 2nd order active filter
	3.2.8 Double integrator
	3.2.9 Bandpass filter – narrow
	3.2.10 Differentiator transfer function
	3.2.11 High pass filter – active
	3.2.12 High pass filter – w domain
	3.2.13 Bandpass filter – wide
	3.2.14 Voltage gain and dB
	3.2.15 Review questions
	3.2.16 Activities

	3.3 Instrumentation amplifier
	3.3.1 Difference amplifier
	3.3.2 CMRR
	3.3.3 Difference amplifier with voltage follower inputs
	3.3.4 Difference amplifier with cross-coupled inputs
	3.3.5 CMRR cross-coupled inputs
	3.3.6 Instrumentation amplifier
	3.3.7 Log amplifier
	3.3.8 Op-amp frequency response
	3.3.9 Review questions
	3.3.10 Activities

	3.4 Noise
	3.4.1 Intrinsic noise
	3.4.2 Environmental noise
	3.4.3 Signal-to-noise ratio
	3.4.4 Optical detectors
	3.4.5 Lock-in amplifier
	3.4.6 Correlation
	3.4.7 Review questions

	3.5 Digital signal processing
	3.5.1 Digital filters
	3.5.2 Fourier series
	3.5.3 Fourier transform
	3.5.4 Sampling
	3.5.5 Discrete Fourier transform
	3.5.6 Filtering
	3.5.7 Digital filtering (domain)
	3.5.8 Convolution
	3.5.9 Discrete convolution
	3.5.10 Digital filtering (t-domain)
	3.5.11 Example
	3.5.12 Smoothing transfer function
	3.5.13 Review questions
	3.5.14 Activities

	Index
	Further reading
	Parts lists for activities

